/* * Arm SSE (Subsystems for Embedded): IoTKit * * Copyright (c) 2018 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/bitops.h" #include "qemu/units.h" #include "qapi/error.h" #include "trace.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/registerfields.h" #include "hw/arm/armsse.h" #include "hw/arm/armsse-version.h" #include "hw/arm/boot.h" #include "hw/irq.h" #include "hw/qdev-clock.h" /* * The SSE-300 puts some devices in different places to the * SSE-200 (and original IoTKit). We use an array of these structs * to define how each variant lays out these devices. (Parts of the * SoC that are the same for all variants aren't handled via these * data structures.) */ #define NO_IRQ -1 #define NO_PPC -1 /* * Special values for ARMSSEDeviceInfo::irq to indicate that this * device uses one of the inputs to the OR gate that feeds into the * CPU NMI input. */ #define NMI_0 10000 #define NMI_1 10001 typedef struct ARMSSEDeviceInfo { const char *name; /* name to use for the QOM object; NULL terminates list */ const char *type; /* QOM type name */ unsigned int index; /* Which of the N devices of this type is this ? */ hwaddr addr; hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */ int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */ int ppc_port; /* Port number of this device on the PPC */ int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */ bool slowclk; /* true if device uses the slow 32KHz clock */ } ARMSSEDeviceInfo; struct ARMSSEInfo { const char *name; const char *cpu_type; uint32_t sse_version; int sram_banks; uint32_t sram_bank_base; int num_cpus; uint32_t sys_version; uint32_t iidr; uint32_t cpuwait_rst; bool has_mhus; bool has_cachectrl; bool has_cpusecctrl; bool has_cpuid; bool has_cpu_pwrctrl; bool has_sse_counter; bool has_tcms; Property *props; const ARMSSEDeviceInfo *devinfo; const bool *irq_is_common; }; static Property iotkit_properties[] = { DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8), DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8), DEFINE_PROP_END_OF_LIST() }; static Property sse200_properties[] = { DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false), DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false), DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true), DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true), DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8), DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8), DEFINE_PROP_UINT32("CPU1_MPU_NS", ARMSSE, cpu_mpu_ns[1], 8), DEFINE_PROP_UINT32("CPU1_MPU_S", ARMSSE, cpu_mpu_s[1], 8), DEFINE_PROP_END_OF_LIST() }; static Property sse300_properties[] = { DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18), DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8), DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8), DEFINE_PROP_END_OF_LIST() }; static const ARMSSEDeviceInfo iotkit_devices[] = { { .name = "timer0", .type = TYPE_CMSDK_APB_TIMER, .index = 0, .addr = 0x40000000, .ppc = 0, .ppc_port = 0, .irq = 3, }, { .name = "timer1", .type = TYPE_CMSDK_APB_TIMER, .index = 1, .addr = 0x40001000, .ppc = 0, .ppc_port = 1, .irq = 4, }, { .name = "s32ktimer", .type = TYPE_CMSDK_APB_TIMER, .index = 2, .addr = 0x4002f000, .ppc = 1, .ppc_port = 0, .irq = 2, .slowclk = true, }, { .name = "dualtimer", .type = TYPE_CMSDK_APB_DUALTIMER, .index = 0, .addr = 0x40002000, .ppc = 0, .ppc_port = 2, .irq = 5, }, { .name = "s32kwatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 0, .addr = 0x5002e000, .ppc = NO_PPC, .irq = NMI_0, .slowclk = true, }, { .name = "nswatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 1, .addr = 0x40081000, .ppc = NO_PPC, .irq = 1, }, { .name = "swatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 2, .addr = 0x50081000, .ppc = NO_PPC, .irq = NMI_1, }, { .name = "armsse-sysinfo", .type = TYPE_IOTKIT_SYSINFO, .index = 0, .addr = 0x40020000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "armsse-sysctl", .type = TYPE_IOTKIT_SYSCTL, .index = 0, .addr = 0x50021000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = NULL, } }; static const ARMSSEDeviceInfo sse200_devices[] = { { .name = "timer0", .type = TYPE_CMSDK_APB_TIMER, .index = 0, .addr = 0x40000000, .ppc = 0, .ppc_port = 0, .irq = 3, }, { .name = "timer1", .type = TYPE_CMSDK_APB_TIMER, .index = 1, .addr = 0x40001000, .ppc = 0, .ppc_port = 1, .irq = 4, }, { .name = "s32ktimer", .type = TYPE_CMSDK_APB_TIMER, .index = 2, .addr = 0x4002f000, .ppc = 1, .ppc_port = 0, .irq = 2, .slowclk = true, }, { .name = "dualtimer", .type = TYPE_CMSDK_APB_DUALTIMER, .index = 0, .addr = 0x40002000, .ppc = 0, .ppc_port = 2, .irq = 5, }, { .name = "s32kwatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 0, .addr = 0x5002e000, .ppc = NO_PPC, .irq = NMI_0, .slowclk = true, }, { .name = "nswatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 1, .addr = 0x40081000, .ppc = NO_PPC, .irq = 1, }, { .name = "swatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 2, .addr = 0x50081000, .ppc = NO_PPC, .irq = NMI_1, }, { .name = "armsse-sysinfo", .type = TYPE_IOTKIT_SYSINFO, .index = 0, .addr = 0x40020000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "armsse-sysctl", .type = TYPE_IOTKIT_SYSCTL, .index = 0, .addr = 0x50021000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "CPU0CORE_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 0, .addr = 0x50023000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "CPU1CORE_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 1, .addr = 0x50025000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "DBG_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 2, .addr = 0x50029000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "RAM0_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 3, .addr = 0x5002a000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "RAM1_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 4, .addr = 0x5002b000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "RAM2_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 5, .addr = 0x5002c000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "RAM3_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 6, .addr = 0x5002d000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "SYS_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 7, .addr = 0x50022000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = NULL, } }; static const ARMSSEDeviceInfo sse300_devices[] = { { .name = "timer0", .type = TYPE_SSE_TIMER, .index = 0, .addr = 0x48000000, .ppc = 0, .ppc_port = 0, .irq = 3, }, { .name = "timer1", .type = TYPE_SSE_TIMER, .index = 1, .addr = 0x48001000, .ppc = 0, .ppc_port = 1, .irq = 4, }, { .name = "timer2", .type = TYPE_SSE_TIMER, .index = 2, .addr = 0x48002000, .ppc = 0, .ppc_port = 2, .irq = 5, }, { .name = "timer3", .type = TYPE_SSE_TIMER, .index = 3, .addr = 0x48003000, .ppc = 0, .ppc_port = 5, .irq = 27, }, { .name = "s32ktimer", .type = TYPE_CMSDK_APB_TIMER, .index = 0, .addr = 0x4802f000, .ppc = 1, .ppc_port = 0, .irq = 2, .slowclk = true, }, { .name = "s32kwatchdog", .type = TYPE_CMSDK_APB_WATCHDOG, .index = 0, .addr = 0x4802e000, .ppc = NO_PPC, .irq = NMI_0, .slowclk = true, }, { .name = "watchdog", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 0, .addr = 0x48040000, .size = 0x2000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "armsse-sysinfo", .type = TYPE_IOTKIT_SYSINFO, .index = 0, .addr = 0x48020000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "armsse-sysctl", .type = TYPE_IOTKIT_SYSCTL, .index = 0, .addr = 0x58021000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "SYS_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 1, .addr = 0x58022000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "CPU0CORE_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 2, .addr = 0x50023000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "MGMT_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 3, .addr = 0x50028000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = "DEBUG_PPU", .type = TYPE_UNIMPLEMENTED_DEVICE, .index = 4, .addr = 0x50029000, .size = 0x1000, .ppc = NO_PPC, .irq = NO_IRQ, }, { .name = NULL, } }; /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ static const bool sse200_irq_is_common[32] = { [0 ... 5] = true, /* 6, 7: per-CPU MHU interrupts */ [8 ... 12] = true, /* 13: per-CPU icache interrupt */ /* 14: reserved */ [15 ... 20] = true, /* 21: reserved */ [22 ... 26] = true, /* 27: reserved */ /* 28, 29: per-CPU CTI interrupts */ /* 30, 31: reserved */ }; static const bool sse300_irq_is_common[32] = { [0 ... 5] = true, /* 6, 7: per-CPU MHU interrupts */ [8 ... 12] = true, /* 13: reserved */ [14 ... 16] = true, /* 17-25: reserved */ [26 ... 27] = true, /* 28, 29: per-CPU CTI interrupts */ /* 30, 31: reserved */ }; static const ARMSSEInfo armsse_variants[] = { { .name = TYPE_IOTKIT, .sse_version = ARMSSE_IOTKIT, .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"), .sram_banks = 1, .sram_bank_base = 0x20000000, .num_cpus = 1, .sys_version = 0x41743, .iidr = 0, .cpuwait_rst = 0, .has_mhus = false, .has_cachectrl = false, .has_cpusecctrl = false, .has_cpuid = false, .has_cpu_pwrctrl = false, .has_sse_counter = false, .has_tcms = false, .props = iotkit_properties, .devinfo = iotkit_devices, .irq_is_common = sse200_irq_is_common, }, { .name = TYPE_SSE200, .sse_version = ARMSSE_SSE200, .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"), .sram_banks = 4, .sram_bank_base = 0x20000000, .num_cpus = 2, .sys_version = 0x22041743, .iidr = 0, .cpuwait_rst = 2, .has_mhus = true, .has_cachectrl = true, .has_cpusecctrl = true, .has_cpuid = true, .has_cpu_pwrctrl = false, .has_sse_counter = false, .has_tcms = false, .props = sse200_properties, .devinfo = sse200_devices, .irq_is_common = sse200_irq_is_common, }, { .name = TYPE_SSE300, .sse_version = ARMSSE_SSE300, .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"), .sram_banks = 2, .sram_bank_base = 0x21000000, .num_cpus = 1, .sys_version = 0x7e00043b, .iidr = 0x74a0043b, .cpuwait_rst = 0, .has_mhus = false, .has_cachectrl = false, .has_cpusecctrl = true, .has_cpuid = true, .has_cpu_pwrctrl = true, .has_sse_counter = true, .has_tcms = true, .props = sse300_properties, .devinfo = sse300_devices, .irq_is_common = sse300_irq_is_common, }, }; static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) { /* Return the SYS_CONFIG value for this SSE */ uint32_t sys_config; switch (info->sse_version) { case ARMSSE_IOTKIT: sys_config = 0; sys_config = deposit32(sys_config, 0, 4, info->sram_banks); sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); break; case ARMSSE_SSE200: sys_config = 0; sys_config = deposit32(sys_config, 0, 4, info->sram_banks); sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); sys_config = deposit32(sys_config, 24, 4, 2); if (info->num_cpus > 1) { sys_config = deposit32(sys_config, 10, 1, 1); sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); sys_config = deposit32(sys_config, 28, 4, 2); } break; case ARMSSE_SSE300: sys_config = 0; sys_config = deposit32(sys_config, 0, 4, info->sram_banks); sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */ break; default: g_assert_not_reached(); } return sys_config; } /* Clock frequency in HZ of the 32KHz "slow clock" */ #define S32KCLK (32 * 1000) /* * Create an alias region in @container of @size bytes starting at @base * which mirrors the memory starting at @orig. */ static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, const char *name, hwaddr base, hwaddr size, hwaddr orig) { memory_region_init_alias(mr, NULL, name, container, orig, size); /* The alias is even lower priority than unimplemented_device regions */ memory_region_add_subregion_overlap(container, base, mr, -1500); } static void irq_status_forwarder(void *opaque, int n, int level) { qemu_irq destirq = opaque; qemu_set_irq(destirq, level); } static void nsccfg_handler(void *opaque, int n, int level) { ARMSSE *s = ARM_SSE(opaque); s->nsccfg = level; } static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) { /* Each of the 4 AHB and 4 APB PPCs that might be present in a * system using the ARMSSE has a collection of control lines which * are provided by the security controller and which we want to * expose as control lines on the ARMSSE device itself, so the * code using the ARMSSE can wire them up to the PPCs. */ SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; DeviceState *armssedev = DEVICE(s); DeviceState *dev_secctl = DEVICE(&s->secctl); DeviceState *dev_splitter = DEVICE(splitter); char *name; name = g_strdup_printf("%s_nonsec", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); name = g_strdup_printf("%s_ap", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); name = g_strdup_printf("%s_irq_enable", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); name = g_strdup_printf("%s_irq_clear", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); /* irq_status is a little more tricky, because we need to * split it so we can send it both to the security controller * and to our OR gate for the NVIC interrupt line. * Connect up the splitter's outputs, and create a GPIO input * which will pass the line state to the input splitter. */ name = g_strdup_printf("%s_irq_status", ppcname); qdev_connect_gpio_out(dev_splitter, 0, qdev_get_gpio_in_named(dev_secctl, name, 0)); qdev_connect_gpio_out(dev_splitter, 1, qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, s->irq_status_in[ppcnum], name, 1); g_free(name); } static void armsse_forward_sec_resp_cfg(ARMSSE *s) { /* Forward the 3rd output from the splitter device as a * named GPIO output of the armsse object. */ DeviceState *dev = DEVICE(s); DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, s->sec_resp_cfg, 1); qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); } static void armsse_init(Object *obj) { ARMSSE *s = ARM_SSE(obj); ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj); const ARMSSEInfo *info = asc->info; const ARMSSEDeviceInfo *devinfo; int i; assert(info->sram_banks <= MAX_SRAM_BANKS); assert(info->num_cpus <= SSE_MAX_CPUS); s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0); s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0); memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); for (i = 0; i < info->num_cpus; i++) { /* * We put each CPU in its own cluster as they are logically * distinct and may be configured differently. */ char *name; name = g_strdup_printf("cluster%d", i); object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); g_free(name); name = g_strdup_printf("armv7m%d", i); object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i], TYPE_ARMV7M); qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type); g_free(name); name = g_strdup_printf("arm-sse-cpu-container%d", i); memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); g_free(name); if (i > 0) { name = g_strdup_printf("arm-sse-container-alias%d", i); memory_region_init_alias(&s->container_alias[i - 1], obj, name, &s->container, 0, UINT64_MAX); g_free(name); } } for (devinfo = info->devinfo; devinfo->name; devinfo++) { assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc)); if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) { assert(devinfo->index < ARRAY_SIZE(s->timer)); object_initialize_child(obj, devinfo->name, &s->timer[devinfo->index], TYPE_CMSDK_APB_TIMER); } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) { assert(devinfo->index == 0); object_initialize_child(obj, devinfo->name, &s->dualtimer, TYPE_CMSDK_APB_DUALTIMER); } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) { assert(devinfo->index < ARRAY_SIZE(s->sse_timer)); object_initialize_child(obj, devinfo->name, &s->sse_timer[devinfo->index], TYPE_SSE_TIMER); } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) { assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog)); object_initialize_child(obj, devinfo->name, &s->cmsdk_watchdog[devinfo->index], TYPE_CMSDK_APB_WATCHDOG); } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) { assert(devinfo->index == 0); object_initialize_child(obj, devinfo->name, &s->sysinfo, TYPE_IOTKIT_SYSINFO); } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) { assert(devinfo->index == 0); object_initialize_child(obj, devinfo->name, &s->sysctl, TYPE_IOTKIT_SYSCTL); } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) { assert(devinfo->index < ARRAY_SIZE(s->unimp)); object_initialize_child(obj, devinfo->name, &s->unimp[devinfo->index], TYPE_UNIMPLEMENTED_DEVICE); } else { g_assert_not_reached(); } } object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL); for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) { g_autofree char *name = g_strdup_printf("apb-ppc%d", i); object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC); } for (i = 0; i < info->sram_banks; i++) { char *name = g_strdup_printf("mpc%d", i); object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC); g_free(name); } object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, TYPE_OR_IRQ); for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { char *name = g_strdup_printf("mpc-irq-splitter-%d", i); SplitIRQ *splitter = &s->mpc_irq_splitter[i]; object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); g_free(name); } if (info->has_mhus) { object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU); object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU); } if (info->has_cachectrl) { for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("cachectrl%d", i); object_initialize_child(obj, name, &s->cachectrl[i], TYPE_UNIMPLEMENTED_DEVICE); g_free(name); } } if (info->has_cpusecctrl) { for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("cpusecctrl%d", i); object_initialize_child(obj, name, &s->cpusecctrl[i], TYPE_UNIMPLEMENTED_DEVICE); g_free(name); } } if (info->has_cpuid) { for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("cpuid%d", i); object_initialize_child(obj, name, &s->cpuid[i], TYPE_ARMSSE_CPUID); g_free(name); } } if (info->has_cpu_pwrctrl) { for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("cpu_pwrctrl%d", i); object_initialize_child(obj, name, &s->cpu_pwrctrl[i], TYPE_ARMSSE_CPU_PWRCTRL); g_free(name); } } if (info->has_sse_counter) { object_initialize_child(obj, "sse-counter", &s->sse_counter, TYPE_SSE_COUNTER); } object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ); object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, TYPE_OR_IRQ); object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, TYPE_SPLIT_IRQ); for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { char *name = g_strdup_printf("ppc-irq-splitter-%d", i); SplitIRQ *splitter = &s->ppc_irq_splitter[i]; object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); g_free(name); } if (info->num_cpus > 1) { for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { if (info->irq_is_common[i]) { char *name = g_strdup_printf("cpu-irq-splitter%d", i); SplitIRQ *splitter = &s->cpu_irq_splitter[i]; object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); g_free(name); } } } } static void armsse_exp_irq(void *opaque, int n, int level) { qemu_irq *irqarray = opaque; qemu_set_irq(irqarray[n], level); } static void armsse_mpcexp_status(void *opaque, int n, int level) { ARMSSE *s = ARM_SSE(opaque); qemu_set_irq(s->mpcexp_status_in[n], level); } static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) { /* * Return a qemu_irq which can be used to signal IRQ n to * all CPUs in the SSE. */ ARMSSEClass *asc = ARM_SSE_GET_CLASS(s); const ARMSSEInfo *info = asc->info; assert(info->irq_is_common[irqno]); if (info->num_cpus == 1) { /* Only one CPU -- just connect directly to it */ return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); } else { /* Connect to the splitter which feeds all CPUs */ return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); } } static void armsse_realize(DeviceState *dev, Error **errp) { ERRP_GUARD(); ARMSSE *s = ARM_SSE(dev); ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev); const ARMSSEInfo *info = asc->info; const ARMSSEDeviceInfo *devinfo; int i; MemoryRegion *mr; SysBusDevice *sbd_apb_ppc0; SysBusDevice *sbd_secctl; DeviceState *dev_apb_ppc0; DeviceState *dev_apb_ppc1; DeviceState *dev_secctl; DeviceState *dev_splitter; uint32_t addr_width_max; if (!s->board_memory) { error_setg(errp, "memory property was not set"); return; } if (!clock_has_source(s->mainclk)) { error_setg(errp, "MAINCLK clock was not connected"); } if (!clock_has_source(s->s32kclk)) { error_setg(errp, "S32KCLK clock was not connected"); } assert(info->num_cpus <= SSE_MAX_CPUS); /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ assert(is_power_of_2(info->sram_banks)); addr_width_max = 24 - ctz32(info->sram_banks); if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", addr_width_max); return; } /* Handling of which devices should be available only to secure * code is usually done differently for M profile than for A profile. * Instead of putting some devices only into the secure address space, * devices exist in both address spaces but with hard-wired security * permissions that will cause the CPU to fault for non-secure accesses. * * The ARMSSE has an IDAU (Implementation Defined Access Unit), * which specifies hard-wired security permissions for different * areas of the physical address space. For the ARMSSE IDAU, the * top 4 bits of the physical address are the IDAU region ID, and * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS * region, otherwise it is an S region. * * The various devices and RAMs are generally all mapped twice, * once into a region that the IDAU defines as secure and once * into a non-secure region. They sit behind either a Memory * Protection Controller (for RAM) or a Peripheral Protection * Controller (for devices), which allow a more fine grained * configuration of whether non-secure accesses are permitted. * * (The other place that guest software can configure security * permissions is in the architected SAU (Security Attribution * Unit), which is entirely inside the CPU. The IDAU can upgrade * the security attributes for a region to more restrictive than * the SAU specifies, but cannot downgrade them.) * * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff * 0x20000000..0x2007ffff 32KB FPGA block RAM * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff * 0x40000000..0x4000ffff base peripheral region 1 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) * 0x40020000..0x4002ffff system control element peripherals * 0x40080000..0x400fffff base peripheral region 2 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff */ memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); for (i = 0; i < info->num_cpus; i++) { DeviceState *cpudev = DEVICE(&s->armv7m[i]); Object *cpuobj = OBJECT(&s->armv7m[i]); int j; char *gpioname; qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk); /* The SSE subsystems do not wire up a systick refclk */ qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS); /* * In real hardware the initial Secure VTOR is set from the INITSVTOR* * registers in the IoT Kit System Control Register block. In QEMU * we set the initial value here, and also the reset value of the * sysctl register, from this object's QOM init-svtor property. * If the guest changes the INITSVTOR* registers at runtime then the * code in iotkit-sysctl.c will update the CPU init-svtor property * (which will then take effect on the next CPU warm-reset). * * Note that typically a board using the SSE-200 will have a system * control processor whose boot firmware initializes the INITSVTOR* * registers before powering up the CPUs. QEMU doesn't emulate * the control processor, so instead we behave in the way that the * firmware does: the initial value should be set by the board code * (using the init-svtor property on the ARMSSE object) to match * whatever its firmware does. */ qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); /* * CPUs start powered down if the corresponding bit in the CPUWAIT * register is 1. In real hardware the CPUWAIT register reset value is * a configurable property of the SSE-200 (via the CPUWAIT0_RST and * CPUWAIT1_RST parameters), but since all the boards we care about * start CPU0 and leave CPU1 powered off, we hard-code that in * info->cpuwait_rst for now. We can add QOM properties for this * later if necessary. */ if (extract32(info->cpuwait_rst, i, 1)) { object_property_set_bool(cpuobj, "start-powered-off", true, &error_abort); } if (!s->cpu_fpu[i]) { if (!object_property_set_bool(cpuobj, "vfp", false, errp)) { return; } } if (!s->cpu_dsp[i]) { if (!object_property_set_bool(cpuobj, "dsp", false, errp)) { return; } } if (!object_property_set_uint(cpuobj, "mpu-ns-regions", s->cpu_mpu_ns[i], errp)) { return; } if (!object_property_set_uint(cpuobj, "mpu-s-regions", s->cpu_mpu_s[i], errp)) { return; } if (i > 0) { memory_region_add_subregion_overlap(&s->cpu_container[i], 0, &s->container_alias[i - 1], -1); } else { memory_region_add_subregion_overlap(&s->cpu_container[i], 0, &s->container, -1); } object_property_set_link(cpuobj, "memory", OBJECT(&s->cpu_container[i]), &error_abort); object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) { return; } /* * The cluster must be realized after the armv7m container, as * the container's CPU object is only created on realize, and the * CPU must exist and have been parented into the cluster before * the cluster is realized. */ if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) { return; } /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); for (j = 0; j < s->exp_numirq; j++) { s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS); } if (i == 0) { gpioname = g_strdup("EXP_IRQ"); } else { gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); } qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, s->exp_irqs[i], gpioname, s->exp_numirq); g_free(gpioname); } /* Wire up the splitters that connect common IRQs to all CPUs */ if (info->num_cpus > 1) { for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { if (info->irq_is_common[i]) { Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); DeviceState *devs = DEVICE(splitter); int cpunum; if (!object_property_set_int(splitter, "num-lines", info->num_cpus, errp)) { return; } if (!qdev_realize(DEVICE(splitter), NULL, errp)) { return; } for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); qdev_connect_gpio_out(devs, cpunum, qdev_get_gpio_in(cpudev, i)); } } } } /* Set up the big aliases first */ make_alias(s, &s->alias1, &s->container, "alias 1", 0x10000000, 0x10000000, 0x00000000); make_alias(s, &s->alias2, &s->container, "alias 2", 0x30000000, 0x10000000, 0x20000000); /* The 0x50000000..0x5fffffff region is not a pure alias: it has * a few extra devices that only appear there (generally the * control interfaces for the protection controllers). * We implement this by mapping those devices over the top of this * alias MR at a higher priority. Some of the devices in this range * are per-CPU, so we must put this alias in the per-cpu containers. */ for (i = 0; i < info->num_cpus; i++) { make_alias(s, &s->alias3[i], &s->cpu_container[i], "alias 3", 0x50000000, 0x10000000, 0x40000000); } /* Security controller */ object_property_set_int(OBJECT(&s->secctl), "sse-version", info->sse_version, &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) { return; } sbd_secctl = SYS_BUS_DEVICE(&s->secctl); dev_secctl = DEVICE(&s->secctl); sysbus_mmio_map(sbd_secctl, 0, 0x50080000); sysbus_mmio_map(sbd_secctl, 1, 0x40080000); s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); /* The sec_resp_cfg output from the security controller must be split into * multiple lines, one for each of the PPCs within the ARMSSE and one * that will be an output from the ARMSSE to the system. */ if (!object_property_set_int(OBJECT(&s->sec_resp_splitter), "num-lines", 3, errp)) { return; } if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) { return; } dev_splitter = DEVICE(&s->sec_resp_splitter); qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, qdev_get_gpio_in(dev_splitter, 0)); /* Each SRAM bank lives behind its own Memory Protection Controller */ for (i = 0; i < info->sram_banks; i++) { char *ramname = g_strdup_printf("armsse.sram%d", i); SysBusDevice *sbd_mpc; uint32_t sram_bank_size = 1 << s->sram_addr_width; memory_region_init_ram(&s->sram[i], NULL, ramname, sram_bank_size, errp); g_free(ramname); if (*errp) { return; } object_property_set_link(OBJECT(&s->mpc[i]), "downstream", OBJECT(&s->sram[i]), &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) { return; } /* Map the upstream end of the MPC into the right place... */ sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); memory_region_add_subregion(&s->container, info->sram_bank_base + i * sram_bank_size, sysbus_mmio_get_region(sbd_mpc, 1)); /* ...and its register interface */ memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, sysbus_mmio_get_region(sbd_mpc, 0)); } /* We must OR together lines from the MPC splitters to go to the NVIC */ if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines", IOTS_NUM_EXP_MPC + info->sram_banks, errp)) { return; } if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) { return; } qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, armsse_get_common_irq_in(s, 9)); /* This OR gate wires together outputs from the secure watchdogs to NMI */ if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2, errp)) { return; } if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) { return; } qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); /* The SSE-300 has a System Counter / System Timestamp Generator */ if (info->has_sse_counter) { SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter); qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk); if (!sysbus_realize(sbd, errp)) { return; } /* * The control frame is only in the Secure region; * the status frame is in the NS region (and visible in the * S region via the alias mapping). */ memory_region_add_subregion(&s->container, 0x58100000, sysbus_mmio_get_region(sbd, 0)); memory_region_add_subregion(&s->container, 0x48101000, sysbus_mmio_get_region(sbd, 1)); } if (info->has_tcms) { /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */ memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp); if (*errp) { return; } memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp); if (*errp) { return; } memory_region_add_subregion(&s->container, 0x00000000, &s->itcm); memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm); } /* Devices behind APB PPC0: * 0x40000000: timer0 * 0x40001000: timer1 * 0x40002000: dual timer * 0x40003000: MHU0 (SSE-200 only) * 0x40004000: MHU1 (SSE-200 only) * We must configure and realize each downstream device and connect * it to the appropriate PPC port; then we can realize the PPC and * map its upstream ends to the right place in the container. */ for (devinfo = info->devinfo; devinfo->name; devinfo++) { SysBusDevice *sbd; qemu_irq irq; if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) { sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]); qdev_connect_clock_in(DEVICE(sbd), "pclk", devinfo->slowclk ? s->s32kclk : s->mainclk); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) { sbd = SYS_BUS_DEVICE(&s->dualtimer); qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) { sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]); assert(info->has_sse_counter); object_property_set_link(OBJECT(sbd), "counter", OBJECT(&s->sse_counter), &error_abort); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) { sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]); qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK", devinfo->slowclk ? s->s32kclk : s->mainclk); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) { sbd = SYS_BUS_DEVICE(&s->sysinfo); object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION", info->sys_version, &error_abort); object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG", armsse_sys_config_value(s, info), &error_abort); object_property_set_int(OBJECT(&s->sysinfo), "sse-version", info->sse_version, &error_abort); object_property_set_int(OBJECT(&s->sysinfo), "IIDR", info->iidr, &error_abort); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) { /* System control registers */ sbd = SYS_BUS_DEVICE(&s->sysctl); object_property_set_int(OBJECT(&s->sysctl), "sse-version", info->sse_version, &error_abort); object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST", info->cpuwait_rst, &error_abort); object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST", s->init_svtor, &error_abort); object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST", s->init_svtor, &error_abort); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) { sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]); qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name); qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size); if (!sysbus_realize(sbd, errp)) { return; } mr = sysbus_mmio_get_region(sbd, 0); } else { g_assert_not_reached(); } switch (devinfo->irq) { case NO_IRQ: irq = NULL; break; case 0 ... NUM_SSE_IRQS - 1: irq = armsse_get_common_irq_in(s, devinfo->irq); break; case NMI_0: case NMI_1: irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate), devinfo->irq - NMI_0); break; default: g_assert_not_reached(); } if (irq) { sysbus_connect_irq(sbd, 0, irq); } /* * Devices connected to a PPC are connected to the port here; * we will map the upstream end of that port to the right address * in the container later after the PPC has been realized. * Devices not connected to a PPC can be mapped immediately. */ if (devinfo->ppc != NO_PPC) { TZPPC *ppc = &s->apb_ppc[devinfo->ppc]; g_autofree char *portname = g_strdup_printf("port[%d]", devinfo->ppc_port); object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), &error_abort); } else { memory_region_add_subregion(&s->container, devinfo->addr, mr); } } if (info->has_mhus) { /* * An SSE-200 with only one CPU should have only one MHU created, * with the region where the second MHU usually is being RAZ/WI. * We don't implement that SSE-200 config; if we want to support * it then this code needs to be enhanced to handle creating the * RAZ/WI region instead of the second MHU. */ assert(info->num_cpus == ARRAY_SIZE(s->mhu)); for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { char *port; int cpunum; SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) { return; } port = g_strdup_printf("port[%d]", i + 3); mr = sysbus_mmio_get_region(mhu_sbd, 0); object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr), &error_abort); g_free(port); /* * Each MHU has an irq line for each CPU: * MHU 0 irq line 0 -> CPU 0 IRQ 6 * MHU 0 irq line 1 -> CPU 1 IRQ 6 * MHU 1 irq line 0 -> CPU 0 IRQ 7 * MHU 1 irq line 1 -> CPU 1 IRQ 7 */ for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); sysbus_connect_irq(mhu_sbd, cpunum, qdev_get_gpio_in(cpudev, 6 + i)); } } } if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) { return; } sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]); dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]); if (info->has_mhus) { mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); memory_region_add_subregion(&s->container, 0x40003000, mr); mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); memory_region_add_subregion(&s->container, 0x40004000, mr); } for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, qdev_get_gpio_in_named(dev_apb_ppc0, "cfg_nonsec", i)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, qdev_get_gpio_in_named(dev_apb_ppc0, "cfg_ap", i)); } qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, qdev_get_gpio_in_named(dev_apb_ppc0, "irq_enable", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, qdev_get_gpio_in_named(dev_apb_ppc0, "irq_clear", 0)); qdev_connect_gpio_out(dev_splitter, 0, qdev_get_gpio_in_named(dev_apb_ppc0, "cfg_sec_resp", 0)); /* All the PPC irq lines (from the 2 internal PPCs and the 8 external * ones) are sent individually to the security controller, and also * ORed together to give a single combined PPC interrupt to the NVIC. */ if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate), "num-lines", NUM_PPCS, errp)) { return; } if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) { return; } qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, armsse_get_common_irq_in(s, 10)); /* * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): * private per-CPU region (all these devices are SSE-200 only): * 0x50010000: L1 icache control registers * 0x50011000: CPUSECCTRL (CPU local security control registers) * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block * The SSE-300 has an extra: * 0x40012000 and 0x50012000: CPU_PWRCTRL register block */ if (info->has_cachectrl) { for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("cachectrl%d", i); qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); g_free(name); qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) { return; } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); } } if (info->has_cpusecctrl) { for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("CPUSECCTRL%d", i); qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); g_free(name); qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) { return; } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); } } if (info->has_cpuid) { for (i = 0; i < info->num_cpus; i++) { qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) { return; } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); } } if (info->has_cpu_pwrctrl) { for (i = 0; i < info->num_cpus; i++) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) { return; } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0); memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr); } } if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) { return; } dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "cfg_nonsec", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "cfg_ap", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "irq_enable", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "irq_clear", 0)); qdev_connect_gpio_out(dev_splitter, 1, qdev_get_gpio_in_named(dev_apb_ppc1, "cfg_sec_resp", 0)); /* * Now both PPCs are realized we can map the upstream ends of * ports which correspond to entries in the devinfo array. * The ports which are connected to non-devinfo devices have * already been mapped. */ for (devinfo = info->devinfo; devinfo->name; devinfo++) { SysBusDevice *ppc_sbd; if (devinfo->ppc == NO_PPC) { continue; } ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]); mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port); memory_region_add_subregion(&s->container, devinfo->addr, mr); } for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); if (!object_property_set_int(splitter, "num-lines", 2, errp)) { return; } if (!qdev_realize(DEVICE(splitter), NULL, errp)) { return; } } for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); armsse_forward_ppc(s, ppcname, i); g_free(ppcname); } for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { char *ppcname = g_strdup_printf("apb_ppcexp%d", i); armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); g_free(ppcname); } for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { /* Wire up IRQ splitter for internal PPCs */ DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", i - NUM_EXTERNAL_PPCS); TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS]; qdev_connect_gpio_out(devs, 0, qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); qdev_connect_gpio_out(devs, 1, qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, qdev_get_gpio_in(devs, 0)); g_free(gpioname); } /* Wire up the splitters for the MPC IRQs */ for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { SplitIRQ *splitter = &s->mpc_irq_splitter[i]; DeviceState *devs = DEVICE(splitter); if (!object_property_set_int(OBJECT(splitter), "num-lines", 2, errp)) { return; } if (!qdev_realize(DEVICE(splitter), NULL, errp)) { return; } if (i < IOTS_NUM_EXP_MPC) { /* Splitter input is from GPIO input line */ s->mpcexp_status_in[i] = qdev_get_gpio_in(devs, 0); qdev_connect_gpio_out(devs, 0, qdev_get_gpio_in_named(dev_secctl, "mpcexp_status", i)); } else { /* Splitter input is from our own MPC */ qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), "irq", 0, qdev_get_gpio_in(devs, 0)); qdev_connect_gpio_out(devs, 0, qdev_get_gpio_in_named(dev_secctl, "mpc_status", i - IOTS_NUM_EXP_MPC)); } qdev_connect_gpio_out(devs, 1, qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); } /* Create GPIO inputs which will pass the line state for our * mpcexp_irq inputs to the correct splitter devices. */ qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", IOTS_NUM_EXP_MPC); armsse_forward_sec_resp_cfg(s); /* Forward the MSC related signals */ qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, armsse_get_common_irq_in(s, 11)); /* * Expose our container region to the board model; this corresponds * to the AHB Slave Expansion ports which allow bus master devices * (eg DMA controllers) in the board model to make transactions into * devices in the ARMSSE. */ sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); } static void armsse_idau_check(IDAUInterface *ii, uint32_t address, int *iregion, bool *exempt, bool *ns, bool *nsc) { /* * For ARMSSE systems the IDAU responses are simple logical functions * of the address bits. The NSC attribute is guest-adjustable via the * NSCCFG register in the security controller. */ ARMSSE *s = ARM_SSE(ii); int region = extract32(address, 28, 4); *ns = !(region & 1); *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ *exempt = (address & 0xeff00000) == 0xe0000000; *iregion = region; } static const VMStateDescription armsse_vmstate = { .name = "iotkit", .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_CLOCK(mainclk, ARMSSE), VMSTATE_CLOCK(s32kclk, ARMSSE), VMSTATE_UINT32(nsccfg, ARMSSE), VMSTATE_END_OF_LIST() } }; static void armsse_reset(DeviceState *dev) { ARMSSE *s = ARM_SSE(dev); s->nsccfg = 0; } static void armsse_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); ARMSSEClass *asc = ARM_SSE_CLASS(klass); const ARMSSEInfo *info = data; dc->realize = armsse_realize; dc->vmsd = &armsse_vmstate; device_class_set_props(dc, info->props); device_class_set_legacy_reset(dc, armsse_reset); iic->check = armsse_idau_check; asc->info = info; } static const TypeInfo armsse_info = { .name = TYPE_ARM_SSE, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ARMSSE), .class_size = sizeof(ARMSSEClass), .instance_init = armsse_init, .abstract = true, .interfaces = (InterfaceInfo[]) { { TYPE_IDAU_INTERFACE }, { } } }; static void armsse_register_types(void) { int i; type_register_static(&armsse_info); for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { TypeInfo ti = { .name = armsse_variants[i].name, .parent = TYPE_ARM_SSE, .class_init = armsse_class_init, .class_data = (void *)&armsse_variants[i], }; type_register(&ti); } } type_init(armsse_register_types);