/* * QEMU Sun4m System Emulator * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "qemu-timer.h" #include "sun4m.h" #include "nvram.h" #include "sparc32_dma.h" #include "fdc.h" #include "sysemu.h" #include "net.h" #include "boards.h" #include "firmware_abi.h" //#define DEBUG_IRQ /* * Sun4m architecture was used in the following machines: * * SPARCserver 6xxMP/xx * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), SPARCclassic X (4/10) * SPARCstation LX/ZX (4/30) * SPARCstation Voyager * SPARCstation 10/xx, SPARCserver 10/xx * SPARCstation 5, SPARCserver 5 * SPARCstation 20/xx, SPARCserver 20 * SPARCstation 4 * * See for example: http://www.sunhelp.org/faq/sunref1.html */ #ifdef DEBUG_IRQ #define DPRINTF(fmt, args...) \ do { printf("CPUIRQ: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif #define KERNEL_LOAD_ADDR 0x00004000 #define CMDLINE_ADDR 0x007ff000 #define INITRD_LOAD_ADDR 0x00800000 #define PROM_SIZE_MAX (512 * 1024) #define PROM_VADDR 0xffd00000 #define PROM_FILENAME "openbios-sparc32" #define MAX_CPUS 16 #define MAX_PILS 16 struct hwdef { target_phys_addr_t iommu_base, slavio_base; target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base, fd_base; target_phys_addr_t dma_base, esp_base, le_base; target_phys_addr_t tcx_base, cs_base, power_base; target_phys_addr_t ecc_base; uint32_t ecc_version; long vram_size, nvram_size; // IRQ numbers are not PIL ones, but master interrupt controller register // bit numbers int intctl_g_intr, esp_irq, le_irq, clock_irq, clock1_irq; int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq; int machine_id; // For NVRAM uint32_t iommu_version; uint32_t intbit_to_level[32]; uint64_t max_mem; const char * const default_cpu_model; }; /* TSC handling */ uint64_t cpu_get_tsc() { return qemu_get_clock(vm_clock); } int DMA_get_channel_mode (int nchan) { return 0; } int DMA_read_memory (int nchan, void *buf, int pos, int size) { return 0; } int DMA_write_memory (int nchan, void *buf, int pos, int size) { return 0; } void DMA_hold_DREQ (int nchan) {} void DMA_release_DREQ (int nchan) {} void DMA_schedule(int nchan) {} void DMA_run (void) {} void DMA_init (int high_page_enable) {} void DMA_register_channel (int nchan, DMA_transfer_handler transfer_handler, void *opaque) { } extern int nographic; static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline, const char *boot_devices, uint32_t RAM_size, uint32_t kernel_size, int width, int height, int depth, int machine_id) { unsigned int i; uint32_t start, end; uint8_t image[0x1ff0]; ohwcfg_v3_t *header = (ohwcfg_v3_t *)ℑ struct sparc_arch_cfg *sparc_header; struct OpenBIOS_nvpart_v1 *part_header; memset(image, '\0', sizeof(image)); // Try to match PPC NVRAM strcpy(header->struct_ident, "QEMU_BIOS"); header->struct_version = cpu_to_be32(3); /* structure v3 */ header->nvram_size = cpu_to_be16(0x2000); header->nvram_arch_ptr = cpu_to_be16(sizeof(ohwcfg_v3_t)); header->nvram_arch_size = cpu_to_be16(sizeof(struct sparc_arch_cfg)); strcpy(header->arch, "sun4m"); header->nb_cpus = smp_cpus & 0xff; header->RAM0_base = 0; header->RAM0_size = cpu_to_be64((uint64_t)RAM_size); strcpy(header->boot_devices, boot_devices); header->nboot_devices = strlen(boot_devices) & 0xff; header->kernel_image = cpu_to_be64((uint64_t)KERNEL_LOAD_ADDR); header->kernel_size = cpu_to_be64((uint64_t)kernel_size); if (cmdline) { strcpy(phys_ram_base + CMDLINE_ADDR, cmdline); header->cmdline = cpu_to_be64((uint64_t)CMDLINE_ADDR); header->cmdline_size = cpu_to_be64((uint64_t)strlen(cmdline)); } // XXX add initrd_image, initrd_size header->width = cpu_to_be16(width); header->height = cpu_to_be16(height); header->depth = cpu_to_be16(depth); if (nographic) header->graphic_flags = cpu_to_be16(OHW_GF_NOGRAPHICS); header->crc = cpu_to_be16(OHW_compute_crc(header, 0x00, 0xF8)); // Architecture specific header start = sizeof(ohwcfg_v3_t); sparc_header = (struct sparc_arch_cfg *)&image[start]; sparc_header->valid = 0; start += sizeof(struct sparc_arch_cfg); // OpenBIOS nvram variables // Variable partition part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_SYSTEM; strcpy(part_header->name, "system"); end = start + sizeof(struct OpenBIOS_nvpart_v1); for (i = 0; i < nb_prom_envs; i++) end = OpenBIOS_set_var(image, end, prom_envs[i]); // End marker image[end++] = '\0'; end = start + ((end - start + 15) & ~15); OpenBIOS_finish_partition(part_header, end - start); // free partition start = end; part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_FREE; strcpy(part_header->name, "free"); end = 0x1fd0; OpenBIOS_finish_partition(part_header, end - start); Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, machine_id); for (i = 0; i < sizeof(image); i++) m48t59_write(nvram, i, image[i]); } static void *slavio_intctl; void pic_info() { slavio_pic_info(slavio_intctl); } void irq_info() { slavio_irq_info(slavio_intctl); } void cpu_check_irqs(CPUState *env) { if (env->pil_in && (env->interrupt_index == 0 || (env->interrupt_index & ~15) == TT_EXTINT)) { unsigned int i; for (i = 15; i > 0; i--) { if (env->pil_in & (1 << i)) { int old_interrupt = env->interrupt_index; env->interrupt_index = TT_EXTINT | i; if (old_interrupt != env->interrupt_index) cpu_interrupt(env, CPU_INTERRUPT_HARD); break; } } } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { env->interrupt_index = 0; cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } } static void cpu_set_irq(void *opaque, int irq, int level) { CPUState *env = opaque; if (level) { DPRINTF("Raise CPU IRQ %d\n", irq); env->halted = 0; env->pil_in |= 1 << irq; cpu_check_irqs(env); } else { DPRINTF("Lower CPU IRQ %d\n", irq); env->pil_in &= ~(1 << irq); cpu_check_irqs(env); } } static void dummy_cpu_set_irq(void *opaque, int irq, int level) { } static void *slavio_misc; void qemu_system_powerdown(void) { slavio_set_power_fail(slavio_misc, 1); } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->halted = 0; } static void secondary_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->halted = 1; } static unsigned long sun4m_load_kernel(const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename) { int linux_boot; unsigned int i; long initrd_size, kernel_size; linux_boot = (kernel_filename != NULL); kernel_size = 0; if (linux_boot) { kernel_size = load_elf(kernel_filename, -0xf0000000ULL, NULL, NULL, NULL); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); if (kernel_size < 0) kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; if (initrd_filename) { initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } if (initrd_size > 0) { for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR); stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size); break; } } } } return kernel_size; } static void sun4m_hw_init(const struct hwdef *hwdef, int RAM_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env, *envs[MAX_CPUS]; unsigned int i; void *iommu, *espdma, *ledma, *main_esp, *nvram; qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq, *espdma_irq, *ledma_irq; qemu_irq *esp_reset, *le_reset; unsigned long prom_offset, kernel_size; int ret; char buf[1024]; BlockDriverState *fd[MAX_FD]; int index; /* init CPUs */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; for(i = 0; i < smp_cpus; i++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find Sparc CPU definition\n"); exit(1); } cpu_sparc_set_id(env, i); envs[i] = env; if (i == 0) { qemu_register_reset(main_cpu_reset, env); } else { qemu_register_reset(secondary_cpu_reset, env); env->halted = 1; } register_savevm("cpu", i, 3, cpu_save, cpu_load, env); cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS); env->prom_addr = hwdef->slavio_base; } for (i = smp_cpus; i < MAX_CPUS; i++) cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); /* allocate RAM */ if ((uint64_t)RAM_size > hwdef->max_mem) { fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n", (unsigned int)RAM_size / (1024 * 1024), (unsigned int)(hwdef->max_mem / (1024 * 1024))); exit(1); } cpu_register_physical_memory(0, RAM_size, 0); /* load boot prom */ prom_offset = RAM_size + hwdef->vram_size; cpu_register_physical_memory(hwdef->slavio_base, (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, prom_offset | IO_MEM_ROM); if (bios_name == NULL) bios_name = PROM_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL); if (ret < 0 || ret > PROM_SIZE_MAX) ret = load_image(buf, phys_ram_base + prom_offset); if (ret < 0 || ret > PROM_SIZE_MAX) { fprintf(stderr, "qemu: could not load prom '%s'\n", buf); exit(1); } /* set up devices */ iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version); slavio_intctl = slavio_intctl_init(hwdef->intctl_base, hwdef->intctl_base + 0x10000ULL, &hwdef->intbit_to_level[0], &slavio_irq, &slavio_cpu_irq, cpu_irqs, hwdef->clock_irq); espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq], iommu, &espdma_irq, &esp_reset); ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, slavio_irq[hwdef->le_irq], iommu, &ledma_irq, &le_reset); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size, hwdef->vram_size, graphic_width, graphic_height, graphic_depth); if (nd_table[0].model == NULL || strcmp(nd_table[0].model, "lance") == 0) { lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset); } else if (strcmp(nd_table[0].model, "?") == 0) { fprintf(stderr, "qemu: Supported NICs: lance\n"); exit (1); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model); exit (1); } nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, hwdef->nvram_size, 8); slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq], slavio_cpu_irq); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq], nographic); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device slavio_serial_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq], serial_hds[1], serial_hds[0]); if (hwdef->fd_base != (target_phys_addr_t)-1) { /* there is zero or one floppy drive */ fd[1] = fd[0] = NULL; index = drive_get_index(IF_FLOPPY, 0, 0); if (index != -1) fd[0] = drives_table[index].bdrv; sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd); } if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } main_esp = esp_init(hwdef->esp_base, espdma, *espdma_irq, esp_reset); for (i = 0; i < ESP_MAX_DEVS; i++) { index = drive_get_index(IF_SCSI, 0, i); if (index == -1) continue; esp_scsi_attach(main_esp, drives_table[index].bdrv, i); } slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->power_base, slavio_irq[hwdef->me_irq]); if (hwdef->cs_base != (target_phys_addr_t)-1) cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl); kernel_size = sun4m_load_kernel(kernel_filename, kernel_cmdline, initrd_filename); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->machine_id); if (hwdef->ecc_base != (target_phys_addr_t)-1) ecc_init(hwdef->ecc_base, hwdef->ecc_version); } static const struct hwdef hwdefs[] = { /* SS-5 */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .cs_base = 0x6c000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .power_base = 0x7a000000, .ecc_base = -1, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .cs_irq = 5, .machine_id = 0x80, .iommu_version = 0x04000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* SS-10 */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .cs_base = -1, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .fd_base = 0xff1700000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .dma_base = 0xef0400000ULL, .esp_base = 0xef0800000ULL, .le_base = 0xef0c00000ULL, .power_base = 0xefa000000ULL, .ecc_base = 0xf00000000ULL, .ecc_version = 0x10000000, // version 0, implementation 1 .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .cs_irq = -1, .machine_id = 0x72, .iommu_version = 0x03000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0xffffffff, // XXX actually first 62GB ok .default_cpu_model = "TI SuperSparc II", }, /* SS-600MP */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .cs_base = -1, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .fd_base = -1, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .dma_base = 0xef0081000ULL, .esp_base = 0xef0080000ULL, .le_base = 0xef0060000ULL, .power_base = 0xefa000000ULL, .ecc_base = 0xf00000000ULL, .ecc_version = 0x00000000, // version 0, implementation 0 .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .cs_irq = -1, .machine_id = 0x71, .iommu_version = 0x01000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0xffffffff, // XXX actually first 62GB ok .default_cpu_model = "TI SuperSparc II", }, }; /* SPARCstation 5 hardware initialisation */ static void ss5_init(int RAM_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&hwdefs[0], RAM_size, boot_device, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 10 hardware initialisation */ static void ss10_init(int RAM_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&hwdefs[1], RAM_size, boot_device, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCserver 600MP hardware initialisation */ static void ss600mp_init(int RAM_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&hwdefs[2], RAM_size, boot_device, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } QEMUMachine ss5_machine = { "SS-5", "Sun4m platform, SPARCstation 5", ss5_init, }; QEMUMachine ss10_machine = { "SS-10", "Sun4m platform, SPARCstation 10", ss10_init, }; QEMUMachine ss600mp_machine = { "SS-600MP", "Sun4m platform, SPARCserver 600MP", ss600mp_init, };