/* * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP * * Copyright (c) 2006-2007 CodeSourcery. * Copyright (c) 2011 Linaro Limited * Written by Paul Brook, Peter Maydell * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/irq.h" #include "hw/ptimer.h" #include "hw/qdev-properties.h" #include "hw/timer/arm_mptimer.h" #include "migration/vmstate.h" #include "qapi/error.h" #include "qemu/module.h" #include "hw/core/cpu.h" #define PTIMER_POLICY \ (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \ PTIMER_POLICY_CONTINUOUS_TRIGGER | \ PTIMER_POLICY_NO_IMMEDIATE_TRIGGER | \ PTIMER_POLICY_NO_IMMEDIATE_RELOAD | \ PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) /* This device implements the per-cpu private timer and watchdog block * which is used in both the ARM11MPCore and Cortex-A9MP. */ static inline int get_current_cpu(ARMMPTimerState *s) { int cpu_id = current_cpu ? current_cpu->cpu_index : 0; if (cpu_id >= s->num_cpu) { hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n", s->num_cpu, cpu_id); } return cpu_id; } static inline void timerblock_update_irq(TimerBlock *tb) { qemu_set_irq(tb->irq, tb->status && (tb->control & 4)); } /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */ static inline uint32_t timerblock_scale(uint32_t control) { return (((control >> 8) & 0xff) + 1) * 10; } /* Must be called within a ptimer transaction block */ static inline void timerblock_set_count(struct ptimer_state *timer, uint32_t control, uint64_t *count) { /* PTimer would trigger interrupt for periodic timer when counter set * to 0, MPtimer under certain condition only. */ if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) { *count = ptimer_get_limit(timer); } ptimer_set_count(timer, *count); } /* Must be called within a ptimer transaction block */ static inline void timerblock_run(struct ptimer_state *timer, uint32_t control, uint32_t load) { if ((control & 1) && ((control & 0xff00) || load != 0)) { ptimer_run(timer, !(control & 2)); } } static void timerblock_tick(void *opaque) { TimerBlock *tb = (TimerBlock *)opaque; /* Periodic timer with load = 0 and prescaler != 0 would re-trigger * IRQ after one period, otherwise it either stops or wraps around. */ if ((tb->control & 2) && (tb->control & 0xff00) == 0 && ptimer_get_limit(tb->timer) == 0) { ptimer_stop(tb->timer); } tb->status = 1; timerblock_update_irq(tb); } static uint64_t timerblock_read(void *opaque, hwaddr addr, unsigned size) { TimerBlock *tb = (TimerBlock *)opaque; switch (addr) { case 0: /* Load */ return ptimer_get_limit(tb->timer); case 4: /* Counter. */ return ptimer_get_count(tb->timer); case 8: /* Control. */ return tb->control; case 12: /* Interrupt status. */ return tb->status; default: return 0; } } static void timerblock_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { TimerBlock *tb = (TimerBlock *)opaque; uint32_t control = tb->control; switch (addr) { case 0: /* Load */ ptimer_transaction_begin(tb->timer); /* Setting load to 0 stops the timer without doing the tick if * prescaler = 0. */ if ((control & 1) && (control & 0xff00) == 0 && value == 0) { ptimer_stop(tb->timer); } ptimer_set_limit(tb->timer, value, 1); timerblock_run(tb->timer, control, value); ptimer_transaction_commit(tb->timer); break; case 4: /* Counter. */ ptimer_transaction_begin(tb->timer); /* Setting counter to 0 stops the one-shot timer, or periodic with * load = 0, without doing the tick if prescaler = 0. */ if ((control & 1) && (control & 0xff00) == 0 && value == 0 && (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) { ptimer_stop(tb->timer); } timerblock_set_count(tb->timer, control, &value); timerblock_run(tb->timer, control, value); ptimer_transaction_commit(tb->timer); break; case 8: /* Control. */ ptimer_transaction_begin(tb->timer); if ((control & 3) != (value & 3)) { ptimer_stop(tb->timer); } if ((control & 0xff00) != (value & 0xff00)) { ptimer_set_period(tb->timer, timerblock_scale(value)); } if (value & 1) { uint64_t count = ptimer_get_count(tb->timer); /* Re-load periodic timer counter if needed. */ if ((value & 2) && count == 0) { timerblock_set_count(tb->timer, value, &count); } timerblock_run(tb->timer, value, count); } tb->control = value; ptimer_transaction_commit(tb->timer); break; case 12: /* Interrupt status. */ tb->status &= ~value; timerblock_update_irq(tb); break; } } /* Wrapper functions to implement the "read timer/watchdog for * the current CPU" memory regions. */ static uint64_t arm_thistimer_read(void *opaque, hwaddr addr, unsigned size) { ARMMPTimerState *s = (ARMMPTimerState *)opaque; int id = get_current_cpu(s); return timerblock_read(&s->timerblock[id], addr, size); } static void arm_thistimer_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { ARMMPTimerState *s = (ARMMPTimerState *)opaque; int id = get_current_cpu(s); timerblock_write(&s->timerblock[id], addr, value, size); } static const MemoryRegionOps arm_thistimer_ops = { .read = arm_thistimer_read, .write = arm_thistimer_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps timerblock_ops = { .read = timerblock_read, .write = timerblock_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static void timerblock_reset(TimerBlock *tb) { tb->control = 0; tb->status = 0; if (tb->timer) { ptimer_transaction_begin(tb->timer); ptimer_stop(tb->timer); ptimer_set_limit(tb->timer, 0, 1); ptimer_set_period(tb->timer, timerblock_scale(0)); ptimer_transaction_commit(tb->timer); } } static void arm_mptimer_reset(DeviceState *dev) { ARMMPTimerState *s = ARM_MPTIMER(dev); int i; for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) { timerblock_reset(&s->timerblock[i]); } } static void arm_mptimer_init_with_bh(Object *obj) { ARMMPTimerState *s = ARM_MPTIMER(obj); memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s, "arm_mptimer_timer", 0x20); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); } static void arm_mptimer_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); ARMMPTimerState *s = ARM_MPTIMER(dev); int i; if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) { error_setg(errp, "num-cpu must be between 1 and %d", ARM_MPTIMER_MAX_CPUS); return; } /* We implement one timer block per CPU, and expose multiple MMIO regions: * * region 0 is "timer for this core" * * region 1 is "timer for core 0" * * region 2 is "timer for core 1" * and so on. * The outgoing interrupt lines are * * timer for core 0 * * timer for core 1 * and so on. */ for (i = 0; i < s->num_cpu; i++) { TimerBlock *tb = &s->timerblock[i]; tb->timer = ptimer_init(timerblock_tick, tb, PTIMER_POLICY); sysbus_init_irq(sbd, &tb->irq); memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb, "arm_mptimer_timerblock", 0x20); sysbus_init_mmio(sbd, &tb->iomem); } } static const VMStateDescription vmstate_timerblock = { .name = "arm_mptimer_timerblock", .version_id = 3, .minimum_version_id = 3, .fields = (VMStateField[]) { VMSTATE_UINT32(control, TimerBlock), VMSTATE_UINT32(status, TimerBlock), VMSTATE_PTIMER(timer, TimerBlock), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_arm_mptimer = { .name = "arm_mptimer", .version_id = 3, .minimum_version_id = 3, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu, 3, vmstate_timerblock, TimerBlock), VMSTATE_END_OF_LIST() } }; static Property arm_mptimer_properties[] = { DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0), DEFINE_PROP_END_OF_LIST() }; static void arm_mptimer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = arm_mptimer_realize; dc->vmsd = &vmstate_arm_mptimer; dc->reset = arm_mptimer_reset; dc->props = arm_mptimer_properties; } static const TypeInfo arm_mptimer_info = { .name = TYPE_ARM_MPTIMER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ARMMPTimerState), .instance_init = arm_mptimer_init_with_bh, .class_init = arm_mptimer_class_init, }; static void arm_mptimer_register_types(void) { type_register_static(&arm_mptimer_info); } type_init(arm_mptimer_register_types)