/* * ARM Nested Vectored Interrupt Controller * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. * * The ARMv7M System controller is fairly tightly tied in with the * NVIC. Much of that is also implemented here. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu-common.h" #include "cpu.h" #include "hw/sysbus.h" #include "qemu/timer.h" #include "hw/intc/armv7m_nvic.h" #include "target/arm/cpu.h" #include "exec/exec-all.h" #include "qemu/log.h" #include "trace.h" /* IRQ number counting: * * the num-irq property counts the number of external IRQ lines * * NVICState::num_irq counts the total number of exceptions * (external IRQs, the 15 internal exceptions including reset, * and one for the unused exception number 0). * * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. * * NVIC_MAX_VECTORS is the highest permitted number of exceptions. * * Iterating through all exceptions should typically be done with * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. * * The external qemu_irq lines are the NVIC's external IRQ lines, * so line 0 is exception 16. * * In the terminology of the architecture manual, "interrupts" are * a subcategory of exception referring to the external interrupts * (which are exception numbers NVIC_FIRST_IRQ and upward). * For historical reasons QEMU tends to use "interrupt" and * "exception" more or less interchangeably. */ #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) /* Effective running priority of the CPU when no exception is active * (higher than the highest possible priority value) */ #define NVIC_NOEXC_PRIO 0x100 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ #define NVIC_NS_PRIO_LIMIT 0x80 static const uint8_t nvic_id[] = { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 }; static int nvic_pending_prio(NVICState *s) { /* return the group priority of the current pending interrupt, * or NVIC_NOEXC_PRIO if no interrupt is pending */ return s->vectpending_prio; } /* Return the value of the ISCR RETTOBASE bit: * 1 if there is exactly one active exception * 0 if there is more than one active exception * UNKNOWN if there are no active exceptions (we choose 1, * which matches the choice Cortex-M3 is documented as making). * * NB: some versions of the documentation talk about this * counting "active exceptions other than the one shown by IPSR"; * this is only different in the obscure corner case where guest * code has manually deactivated an exception and is about * to fail an exception-return integrity check. The definition * above is the one from the v8M ARM ARM and is also in line * with the behaviour documented for the Cortex-M3. */ static bool nvic_rettobase(NVICState *s) { int irq, nhand = 0; bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { if (s->vectors[irq].active || (check_sec && irq < NVIC_INTERNAL_VECTORS && s->sec_vectors[irq].active)) { nhand++; if (nhand == 2) { return 0; } } } return 1; } /* Return the value of the ISCR ISRPENDING bit: * 1 if an external interrupt is pending * 0 if no external interrupt is pending */ static bool nvic_isrpending(NVICState *s) { int irq; /* We can shortcut if the highest priority pending interrupt * happens to be external or if there is nothing pending. */ if (s->vectpending > NVIC_FIRST_IRQ) { return true; } if (s->vectpending == 0) { return false; } for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { if (s->vectors[irq].pending) { return true; } } return false; } static bool exc_is_banked(int exc) { /* Return true if this is one of the limited set of exceptions which * are banked (and thus have state in sec_vectors[]) */ return exc == ARMV7M_EXCP_HARD || exc == ARMV7M_EXCP_MEM || exc == ARMV7M_EXCP_USAGE || exc == ARMV7M_EXCP_SVC || exc == ARMV7M_EXCP_PENDSV || exc == ARMV7M_EXCP_SYSTICK; } /* Return a mask word which clears the subpriority bits from * a priority value for an M-profile exception, leaving only * the group priority. */ static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) { return ~0U << (s->prigroup[secure] + 1); } static bool exc_targets_secure(NVICState *s, int exc) { /* Return true if this non-banked exception targets Secure state. */ if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { return false; } if (exc >= NVIC_FIRST_IRQ) { return !s->itns[exc]; } /* Function shouldn't be called for banked exceptions. */ assert(!exc_is_banked(exc)); switch (exc) { case ARMV7M_EXCP_NMI: case ARMV7M_EXCP_BUS: return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); case ARMV7M_EXCP_SECURE: return true; case ARMV7M_EXCP_DEBUG: /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ return false; default: /* reset, and reserved (unused) low exception numbers. * We'll get called by code that loops through all the exception * numbers, but it doesn't matter what we return here as these * non-existent exceptions will never be pended or active. */ return true; } } static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) { /* Return the group priority for this exception, given its raw * (group-and-subgroup) priority value and whether it is targeting * secure state or not. */ if (rawprio < 0) { return rawprio; } rawprio &= nvic_gprio_mask(s, targets_secure); /* AIRCR.PRIS causes us to squash all NS priorities into the * lower half of the total range */ if (!targets_secure && (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; } return rawprio; } /* Recompute vectpending and exception_prio for a CPU which implements * the Security extension */ static void nvic_recompute_state_secure(NVICState *s) { int i, bank; int pend_prio = NVIC_NOEXC_PRIO; int active_prio = NVIC_NOEXC_PRIO; int pend_irq = 0; bool pending_is_s_banked = false; int pend_subprio = 0; /* R_CQRV: precedence is by: * - lowest group priority; if both the same then * - lowest subpriority; if both the same then * - lowest exception number; if both the same (ie banked) then * - secure exception takes precedence * Compare pseudocode RawExecutionPriority. * Annoyingly, now we have two prigroup values (for S and NS) * we can't do the loop comparison on raw priority values. */ for (i = 1; i < s->num_irq; i++) { for (bank = M_REG_S; bank >= M_REG_NS; bank--) { VecInfo *vec; int prio, subprio; bool targets_secure; if (bank == M_REG_S) { if (!exc_is_banked(i)) { continue; } vec = &s->sec_vectors[i]; targets_secure = true; } else { vec = &s->vectors[i]; targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); } prio = exc_group_prio(s, vec->prio, targets_secure); subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); if (vec->enabled && vec->pending && ((prio < pend_prio) || (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { pend_prio = prio; pend_subprio = subprio; pend_irq = i; pending_is_s_banked = (bank == M_REG_S); } if (vec->active && prio < active_prio) { active_prio = prio; } } } s->vectpending_is_s_banked = pending_is_s_banked; s->vectpending = pend_irq; s->vectpending_prio = pend_prio; s->exception_prio = active_prio; trace_nvic_recompute_state_secure(s->vectpending, s->vectpending_is_s_banked, s->vectpending_prio, s->exception_prio); } /* Recompute vectpending and exception_prio */ static void nvic_recompute_state(NVICState *s) { int i; int pend_prio = NVIC_NOEXC_PRIO; int active_prio = NVIC_NOEXC_PRIO; int pend_irq = 0; /* In theory we could write one function that handled both * the "security extension present" and "not present"; however * the security related changes significantly complicate the * recomputation just by themselves and mixing both cases together * would be even worse, so we retain a separate non-secure-only * version for CPUs which don't implement the security extension. */ if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { nvic_recompute_state_secure(s); return; } for (i = 1; i < s->num_irq; i++) { VecInfo *vec = &s->vectors[i]; if (vec->enabled && vec->pending && vec->prio < pend_prio) { pend_prio = vec->prio; pend_irq = i; } if (vec->active && vec->prio < active_prio) { active_prio = vec->prio; } } if (active_prio > 0) { active_prio &= nvic_gprio_mask(s, false); } if (pend_prio > 0) { pend_prio &= nvic_gprio_mask(s, false); } s->vectpending = pend_irq; s->vectpending_prio = pend_prio; s->exception_prio = active_prio; trace_nvic_recompute_state(s->vectpending, s->vectpending_prio, s->exception_prio); } /* Return the current execution priority of the CPU * (equivalent to the pseudocode ExecutionPriority function). * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. */ static inline int nvic_exec_prio(NVICState *s) { CPUARMState *env = &s->cpu->env; int running = NVIC_NOEXC_PRIO; if (env->v7m.basepri[M_REG_NS] > 0) { running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); } if (env->v7m.basepri[M_REG_S] > 0) { int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); if (running > basepri) { running = basepri; } } if (env->v7m.primask[M_REG_NS]) { if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { if (running > NVIC_NS_PRIO_LIMIT) { running = NVIC_NS_PRIO_LIMIT; } } else { running = 0; } } if (env->v7m.primask[M_REG_S]) { running = 0; } if (env->v7m.faultmask[M_REG_NS]) { if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { running = -1; } else { if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { if (running > NVIC_NS_PRIO_LIMIT) { running = NVIC_NS_PRIO_LIMIT; } } else { running = 0; } } } if (env->v7m.faultmask[M_REG_S]) { running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; } /* consider priority of active handler */ return MIN(running, s->exception_prio); } bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) { /* Return true if the requested execution priority is negative * for the specified security state, ie that security state * has an active NMI or HardFault or has set its FAULTMASK. * Note that this is not the same as whether the execution * priority is actually negative (for instance AIRCR.PRIS may * mean we don't allow FAULTMASK_NS to actually make the execution * priority negative). Compare pseudocode IsReqExcPriNeg(). */ NVICState *s = opaque; if (s->cpu->env.v7m.faultmask[secure]) { return true; } if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : s->vectors[ARMV7M_EXCP_HARD].active) { return true; } if (s->vectors[ARMV7M_EXCP_NMI].active && exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { return true; } return false; } bool armv7m_nvic_can_take_pending_exception(void *opaque) { NVICState *s = opaque; return nvic_exec_prio(s) > nvic_pending_prio(s); } int armv7m_nvic_raw_execution_priority(void *opaque) { NVICState *s = opaque; return s->exception_prio; } /* caller must call nvic_irq_update() after this. * secure indicates the bank to use for banked exceptions (we assert if * we are passed secure=true for a non-banked exception). */ static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) { assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ assert(irq < s->num_irq); prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); if (secure) { assert(exc_is_banked(irq)); s->sec_vectors[irq].prio = prio; } else { s->vectors[irq].prio = prio; } trace_nvic_set_prio(irq, secure, prio); } /* Return the current raw priority register value. * secure indicates the bank to use for banked exceptions (we assert if * we are passed secure=true for a non-banked exception). */ static int get_prio(NVICState *s, unsigned irq, bool secure) { assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ assert(irq < s->num_irq); if (secure) { assert(exc_is_banked(irq)); return s->sec_vectors[irq].prio; } else { return s->vectors[irq].prio; } } /* Recompute state and assert irq line accordingly. * Must be called after changes to: * vec->active, vec->enabled, vec->pending or vec->prio for any vector * prigroup */ static void nvic_irq_update(NVICState *s) { int lvl; int pend_prio; nvic_recompute_state(s); pend_prio = nvic_pending_prio(s); /* Raise NVIC output if this IRQ would be taken, except that we * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which * will be checked for in arm_v7m_cpu_exec_interrupt()); changes * to those CPU registers don't cause us to recalculate the NVIC * pending info. */ lvl = (pend_prio < s->exception_prio); trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); qemu_set_irq(s->excpout, lvl); } /** * armv7m_nvic_clear_pending: mark the specified exception as not pending * @opaque: the NVIC * @irq: the exception number to mark as not pending * @secure: false for non-banked exceptions or for the nonsecure * version of a banked exception, true for the secure version of a banked * exception. * * Marks the specified exception as not pending. Note that we will assert() * if @secure is true and @irq does not specify one of the fixed set * of architecturally banked exceptions. */ static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) { NVICState *s = (NVICState *)opaque; VecInfo *vec; assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); if (secure) { assert(exc_is_banked(irq)); vec = &s->sec_vectors[irq]; } else { vec = &s->vectors[irq]; } trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); if (vec->pending) { vec->pending = 0; nvic_irq_update(s); } } static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, bool derived) { /* Pend an exception, including possibly escalating it to HardFault. * * This function handles both "normal" pending of interrupts and * exceptions, and also derived exceptions (ones which occur as * a result of trying to take some other exception). * * If derived == true, the caller guarantees that we are part way through * trying to take an exception (but have not yet called * armv7m_nvic_acknowledge_irq() to make it active), and so: * - s->vectpending is the "original exception" we were trying to take * - irq is the "derived exception" * - nvic_exec_prio(s) gives the priority before exception entry * Here we handle the prioritization logic which the pseudocode puts * in the DerivedLateArrival() function. */ NVICState *s = (NVICState *)opaque; bool banked = exc_is_banked(irq); VecInfo *vec; bool targets_secure; assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); assert(!secure || banked); vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; targets_secure = banked ? secure : exc_targets_secure(s, irq); trace_nvic_set_pending(irq, secure, targets_secure, derived, vec->enabled, vec->prio); if (derived) { /* Derived exceptions are always synchronous. */ assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); if (irq == ARMV7M_EXCP_DEBUG && exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { /* DebugMonitorFault, but its priority is lower than the * preempted exception priority: just ignore it. */ return; } if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { /* If this is a terminal exception (one which means we cannot * take the original exception, like a failure to read its * vector table entry), then we must take the derived exception. * If the derived exception can't take priority over the * original exception, then we go into Lockup. * * For QEMU, we rely on the fact that a derived exception is * terminal if and only if it's reported to us as HardFault, * which saves having to have an extra argument is_terminal * that we'd only use in one place. */ cpu_abort(&s->cpu->parent_obj, "Lockup: can't take terminal derived exception " "(original exception priority %d)\n", s->vectpending_prio); } /* We now continue with the same code as for a normal pending * exception, which will cause us to pend the derived exception. * We'll then take either the original or the derived exception * based on which is higher priority by the usual mechanism * for selecting the highest priority pending interrupt. */ } if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { /* If a synchronous exception is pending then it may be * escalated to HardFault if: * * it is equal or lower priority to current execution * * it is disabled * (ie we need to take it immediately but we can't do so). * Asynchronous exceptions (and interrupts) simply remain pending. * * For QEMU, we don't have any imprecise (asynchronous) faults, * so we can assume that PREFETCH_ABORT and DATA_ABORT are always * synchronous. * Debug exceptions are awkward because only Debug exceptions * resulting from the BKPT instruction should be escalated, * but we don't currently implement any Debug exceptions other * than those that result from BKPT, so we treat all debug exceptions * as needing escalation. * * This all means we can identify whether to escalate based only on * the exception number and don't (yet) need the caller to explicitly * tell us whether this exception is synchronous or not. */ int running = nvic_exec_prio(s); bool escalate = false; if (exc_group_prio(s, vec->prio, secure) >= running) { trace_nvic_escalate_prio(irq, vec->prio, running); escalate = true; } else if (!vec->enabled) { trace_nvic_escalate_disabled(irq); escalate = true; } if (escalate) { /* We need to escalate this exception to a synchronous HardFault. * If BFHFNMINS is set then we escalate to the banked HF for * the target security state of the original exception; otherwise * we take a Secure HardFault. */ irq = ARMV7M_EXCP_HARD; if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && (targets_secure || !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { vec = &s->sec_vectors[irq]; } else { vec = &s->vectors[irq]; } if (running <= vec->prio) { /* We want to escalate to HardFault but we can't take the * synchronous HardFault at this point either. This is a * Lockup condition due to a guest bug. We don't model * Lockup, so report via cpu_abort() instead. */ cpu_abort(&s->cpu->parent_obj, "Lockup: can't escalate %d to HardFault " "(current priority %d)\n", irq, running); } /* HF may be banked but there is only one shared HFSR */ s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; } } if (!vec->pending) { vec->pending = 1; nvic_irq_update(s); } } void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) { do_armv7m_nvic_set_pending(opaque, irq, secure, false); } void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) { do_armv7m_nvic_set_pending(opaque, irq, secure, true); } void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) { /* * Pend an exception during lazy FP stacking. This differs * from the usual exception pending because the logic for * whether we should escalate depends on the saved context * in the FPCCR register, not on the current state of the CPU/NVIC. */ NVICState *s = (NVICState *)opaque; bool banked = exc_is_banked(irq); VecInfo *vec; bool targets_secure; bool escalate = false; /* * We will only look at bits in fpccr if this is a banked exception * (in which case 'secure' tells us whether it is the S or NS version). * All the bits for the non-banked exceptions are in fpccr_s. */ uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); assert(!secure || banked); vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; targets_secure = banked ? secure : exc_targets_secure(s, irq); switch (irq) { case ARMV7M_EXCP_DEBUG: if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { /* Ignore DebugMonitor exception */ return; } break; case ARMV7M_EXCP_MEM: escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); break; case ARMV7M_EXCP_USAGE: escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); break; case ARMV7M_EXCP_BUS: escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); break; case ARMV7M_EXCP_SECURE: escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); break; default: g_assert_not_reached(); } if (escalate) { /* * Escalate to HardFault: faults that initially targeted Secure * continue to do so, even if HF normally targets NonSecure. */ irq = ARMV7M_EXCP_HARD; if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && (targets_secure || !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { vec = &s->sec_vectors[irq]; } else { vec = &s->vectors[irq]; } } if (!vec->enabled || nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { /* * We want to escalate to HardFault but the context the * FP state belongs to prevents the exception pre-empting. */ cpu_abort(&s->cpu->parent_obj, "Lockup: can't escalate to HardFault during " "lazy FP register stacking\n"); } } if (escalate) { s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; } if (!vec->pending) { vec->pending = 1; /* * We do not call nvic_irq_update(), because we know our caller * is going to handle causing us to take the exception by * raising EXCP_LAZYFP, so raising the IRQ line would be * pointless extra work. We just need to recompute the * priorities so that armv7m_nvic_can_take_pending_exception() * returns the right answer. */ nvic_recompute_state(s); } } /* Make pending IRQ active. */ void armv7m_nvic_acknowledge_irq(void *opaque) { NVICState *s = (NVICState *)opaque; CPUARMState *env = &s->cpu->env; const int pending = s->vectpending; const int running = nvic_exec_prio(s); VecInfo *vec; assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); if (s->vectpending_is_s_banked) { vec = &s->sec_vectors[pending]; } else { vec = &s->vectors[pending]; } assert(vec->enabled); assert(vec->pending); assert(s->vectpending_prio < running); trace_nvic_acknowledge_irq(pending, s->vectpending_prio); vec->active = 1; vec->pending = 0; write_v7m_exception(env, s->vectpending); nvic_irq_update(s); } void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, bool *ptargets_secure) { NVICState *s = (NVICState *)opaque; const int pending = s->vectpending; bool targets_secure; assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); if (s->vectpending_is_s_banked) { targets_secure = true; } else { targets_secure = !exc_is_banked(pending) && exc_targets_secure(s, pending); } trace_nvic_get_pending_irq_info(pending, targets_secure); *ptargets_secure = targets_secure; *pirq = pending; } int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) { NVICState *s = (NVICState *)opaque; VecInfo *vec; int ret; assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); if (secure && exc_is_banked(irq)) { vec = &s->sec_vectors[irq]; } else { vec = &s->vectors[irq]; } trace_nvic_complete_irq(irq, secure); if (!vec->active) { /* Tell the caller this was an illegal exception return */ return -1; } ret = nvic_rettobase(s); vec->active = 0; if (vec->level) { /* Re-pend the exception if it's still held high; only * happens for extenal IRQs */ assert(irq >= NVIC_FIRST_IRQ); vec->pending = 1; } nvic_irq_update(s); return ret; } bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) { /* * Return whether an exception is "ready", i.e. it is enabled and is * configured at a priority which would allow it to interrupt the * current execution priority. * * irq and secure have the same semantics as for armv7m_nvic_set_pending(): * for non-banked exceptions secure is always false; for banked exceptions * it indicates which of the exceptions is required. */ NVICState *s = (NVICState *)opaque; bool banked = exc_is_banked(irq); VecInfo *vec; int running = nvic_exec_prio(s); assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); assert(!secure || banked); /* * HardFault is an odd special case: we always check against -1, * even if we're secure and HardFault has priority -3; we never * need to check for enabled state. */ if (irq == ARMV7M_EXCP_HARD) { return running > -1; } vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; return vec->enabled && exc_group_prio(s, vec->prio, secure) < running; } /* callback when external interrupt line is changed */ static void set_irq_level(void *opaque, int n, int level) { NVICState *s = opaque; VecInfo *vec; n += NVIC_FIRST_IRQ; assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); trace_nvic_set_irq_level(n, level); /* The pending status of an external interrupt is * latched on rising edge and exception handler return. * * Pulsing the IRQ will always run the handler * once, and the handler will re-run until the * level is low when the handler completes. */ vec = &s->vectors[n]; if (level != vec->level) { vec->level = level; if (level) { armv7m_nvic_set_pending(s, n, false); } } } /* callback when external NMI line is changed */ static void nvic_nmi_trigger(void *opaque, int n, int level) { NVICState *s = opaque; trace_nvic_set_nmi_level(level); /* * The architecture doesn't specify whether NMI should share * the normal-interrupt behaviour of being resampled on * exception handler return. We choose not to, so just * set NMI pending here and don't track the current level. */ if (level) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); } } static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) { ARMCPU *cpu = s->cpu; uint32_t val; switch (offset) { case 4: /* Interrupt Control Type. */ if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { goto bad_offset; } return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; case 0xc: /* CPPWR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } /* We make the IMPDEF choice that nothing can ever go into a * non-retentive power state, which allows us to RAZ/WI this. */ return 0; case 0x380 ... 0x3bf: /* NVIC_ITNS */ { int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; int i; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } val = 0; for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { if (s->itns[startvec + i]) { val |= (1 << i); } } return val; } case 0xd00: /* CPUID Base. */ return cpu->midr; case 0xd04: /* Interrupt Control State (ICSR) */ /* VECTACTIVE */ val = cpu->env.v7m.exception; /* VECTPENDING */ val |= (s->vectpending & 0xff) << 12; /* ISRPENDING - set if any external IRQ is pending */ if (nvic_isrpending(s)) { val |= (1 << 22); } /* RETTOBASE - set if only one handler is active */ if (nvic_rettobase(s)) { val |= (1 << 11); } if (attrs.secure) { /* PENDSTSET */ if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { val |= (1 << 26); } /* PENDSVSET */ if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { val |= (1 << 28); } } else { /* PENDSTSET */ if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { val |= (1 << 26); } /* PENDSVSET */ if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { val |= (1 << 28); } } /* NMIPENDSET */ if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) && s->vectors[ARMV7M_EXCP_NMI].pending) { val |= (1 << 31); } /* ISRPREEMPT: RES0 when halting debug not implemented */ /* STTNS: RES0 for the Main Extension */ return val; case 0xd08: /* Vector Table Offset. */ return cpu->env.v7m.vecbase[attrs.secure]; case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); if (attrs.secure) { /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ val |= cpu->env.v7m.aircr; } else { if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If * security isn't supported then BFHFNMINS is RAO (and * the bit in env.v7m.aircr is always set). */ val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; } } return val; case 0xd10: /* System Control. */ if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { goto bad_offset; } return cpu->env.v7m.scr[attrs.secure]; case 0xd14: /* Configuration Control. */ /* The BFHFNMIGN bit is the only non-banked bit; we * keep it in the non-secure copy of the register. */ val = cpu->env.v7m.ccr[attrs.secure]; val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; return val; case 0xd24: /* System Handler Control and State (SHCSR) */ if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { goto bad_offset; } val = 0; if (attrs.secure) { if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { val |= (1 << 0); } if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { val |= (1 << 2); } if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { val |= (1 << 3); } if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { val |= (1 << 7); } if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { val |= (1 << 10); } if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { val |= (1 << 11); } if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { val |= (1 << 12); } if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { val |= (1 << 13); } if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { val |= (1 << 15); } if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { val |= (1 << 16); } if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { val |= (1 << 18); } if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { val |= (1 << 21); } /* SecureFault is not banked but is always RAZ/WI to NS */ if (s->vectors[ARMV7M_EXCP_SECURE].active) { val |= (1 << 4); } if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { val |= (1 << 19); } if (s->vectors[ARMV7M_EXCP_SECURE].pending) { val |= (1 << 20); } } else { if (s->vectors[ARMV7M_EXCP_MEM].active) { val |= (1 << 0); } if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ if (s->vectors[ARMV7M_EXCP_HARD].active) { val |= (1 << 2); } if (s->vectors[ARMV7M_EXCP_HARD].pending) { val |= (1 << 21); } } if (s->vectors[ARMV7M_EXCP_USAGE].active) { val |= (1 << 3); } if (s->vectors[ARMV7M_EXCP_SVC].active) { val |= (1 << 7); } if (s->vectors[ARMV7M_EXCP_PENDSV].active) { val |= (1 << 10); } if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { val |= (1 << 11); } if (s->vectors[ARMV7M_EXCP_USAGE].pending) { val |= (1 << 12); } if (s->vectors[ARMV7M_EXCP_MEM].pending) { val |= (1 << 13); } if (s->vectors[ARMV7M_EXCP_SVC].pending) { val |= (1 << 15); } if (s->vectors[ARMV7M_EXCP_MEM].enabled) { val |= (1 << 16); } if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { val |= (1 << 18); } } if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { if (s->vectors[ARMV7M_EXCP_BUS].active) { val |= (1 << 1); } if (s->vectors[ARMV7M_EXCP_BUS].pending) { val |= (1 << 14); } if (s->vectors[ARMV7M_EXCP_BUS].enabled) { val |= (1 << 17); } if (arm_feature(&cpu->env, ARM_FEATURE_V8) && s->vectors[ARMV7M_EXCP_NMI].active) { /* NMIACT is not present in v7M */ val |= (1 << 5); } } /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ if (s->vectors[ARMV7M_EXCP_DEBUG].active) { val |= (1 << 8); } return val; case 0xd2c: /* Hard Fault Status. */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } return cpu->env.v7m.hfsr; case 0xd30: /* Debug Fault Status. */ return cpu->env.v7m.dfsr; case 0xd34: /* MMFAR MemManage Fault Address */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } return cpu->env.v7m.mmfar[attrs.secure]; case 0xd38: /* Bus Fault Address. */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } if (!attrs.secure && !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { return 0; } return cpu->env.v7m.bfar; case 0xd3c: /* Aux Fault Status. */ /* TODO: Implement fault status registers. */ qemu_log_mask(LOG_UNIMP, "Aux Fault status registers unimplemented\n"); return 0; case 0xd40: /* PFR0. */ return cpu->id_pfr0; case 0xd44: /* PFR1. */ return cpu->id_pfr1; case 0xd48: /* DFR0. */ return cpu->id_dfr0; case 0xd4c: /* AFR0. */ return cpu->id_afr0; case 0xd50: /* MMFR0. */ return cpu->id_mmfr0; case 0xd54: /* MMFR1. */ return cpu->id_mmfr1; case 0xd58: /* MMFR2. */ return cpu->id_mmfr2; case 0xd5c: /* MMFR3. */ return cpu->id_mmfr3; case 0xd60: /* ISAR0. */ return cpu->isar.id_isar0; case 0xd64: /* ISAR1. */ return cpu->isar.id_isar1; case 0xd68: /* ISAR2. */ return cpu->isar.id_isar2; case 0xd6c: /* ISAR3. */ return cpu->isar.id_isar3; case 0xd70: /* ISAR4. */ return cpu->isar.id_isar4; case 0xd74: /* ISAR5. */ return cpu->isar.id_isar5; case 0xd78: /* CLIDR */ return cpu->clidr; case 0xd7c: /* CTR */ return cpu->ctr; case 0xd80: /* CSSIDR */ { int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; return cpu->ccsidr[idx]; } case 0xd84: /* CSSELR */ return cpu->env.v7m.csselr[attrs.secure]; case 0xd88: /* CPACR */ if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { return 0; } return cpu->env.v7m.cpacr[attrs.secure]; case 0xd8c: /* NSACR */ if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) { return 0; } return cpu->env.v7m.nsacr; /* TODO: Implement debug registers. */ case 0xd90: /* MPU_TYPE */ /* Unified MPU; if the MPU is not present this value is zero */ return cpu->pmsav7_dregion << 8; break; case 0xd94: /* MPU_CTRL */ return cpu->env.v7m.mpu_ctrl[attrs.secure]; case 0xd98: /* MPU_RNR */ return cpu->env.pmsav7.rnr[attrs.secure]; case 0xd9c: /* MPU_RBAR */ case 0xda4: /* MPU_RBAR_A1 */ case 0xdac: /* MPU_RBAR_A2 */ case 0xdb4: /* MPU_RBAR_A3 */ { int region = cpu->env.pmsav7.rnr[attrs.secure]; if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* PMSAv8M handling of the aliases is different from v7M: * aliases A1, A2, A3 override the low two bits of the region * number in MPU_RNR, and there is no 'region' field in the * RBAR register. */ int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ if (aliasno) { region = deposit32(region, 0, 2, aliasno); } if (region >= cpu->pmsav7_dregion) { return 0; } return cpu->env.pmsav8.rbar[attrs.secure][region]; } if (region >= cpu->pmsav7_dregion) { return 0; } return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); } case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ { int region = cpu->env.pmsav7.rnr[attrs.secure]; if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* PMSAv8M handling of the aliases is different from v7M: * aliases A1, A2, A3 override the low two bits of the region * number in MPU_RNR. */ int aliasno = (offset - 0xda0) / 8; /* 0..3 */ if (aliasno) { region = deposit32(region, 0, 2, aliasno); } if (region >= cpu->pmsav7_dregion) { return 0; } return cpu->env.pmsav8.rlar[attrs.secure][region]; } if (region >= cpu->pmsav7_dregion) { return 0; } return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | (cpu->env.pmsav7.drsr[region] & 0xffff); } case 0xdc0: /* MPU_MAIR0 */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } return cpu->env.pmsav8.mair0[attrs.secure]; case 0xdc4: /* MPU_MAIR1 */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } return cpu->env.pmsav8.mair1[attrs.secure]; case 0xdd0: /* SAU_CTRL */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } return cpu->env.sau.ctrl; case 0xdd4: /* SAU_TYPE */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } return cpu->sau_sregion; case 0xdd8: /* SAU_RNR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } return cpu->env.sau.rnr; case 0xddc: /* SAU_RBAR */ { int region = cpu->env.sau.rnr; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } if (region >= cpu->sau_sregion) { return 0; } return cpu->env.sau.rbar[region]; } case 0xde0: /* SAU_RLAR */ { int region = cpu->env.sau.rnr; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } if (region >= cpu->sau_sregion) { return 0; } return cpu->env.sau.rlar[region]; } case 0xde4: /* SFSR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } return cpu->env.v7m.sfsr; case 0xde8: /* SFAR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return 0; } return cpu->env.v7m.sfar; case 0xf34: /* FPCCR */ if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { return 0; } if (attrs.secure) { return cpu->env.v7m.fpccr[M_REG_S]; } else { /* * NS can read LSPEN, CLRONRET and MONRDY. It can read * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; * other non-banked bits RAZ. * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. */ uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_CLRONRET_MASK | R_V7M_FPCCR_MONRDY_MASK; if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; } value &= mask; value |= cpu->env.v7m.fpccr[M_REG_NS]; return value; } case 0xf38: /* FPCAR */ if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { return 0; } return cpu->env.v7m.fpcar[attrs.secure]; case 0xf3c: /* FPDSCR */ if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { return 0; } return cpu->env.v7m.fpdscr[attrs.secure]; case 0xf40: /* MVFR0 */ return cpu->isar.mvfr0; case 0xf44: /* MVFR1 */ return cpu->isar.mvfr1; case 0xf48: /* MVFR2 */ return cpu->isar.mvfr2; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); return 0; } } static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, MemTxAttrs attrs) { ARMCPU *cpu = s->cpu; switch (offset) { case 0xc: /* CPPWR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } /* Make the IMPDEF choice to RAZ/WI this. */ break; case 0x380 ... 0x3bf: /* NVIC_ITNS */ { int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; int i; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { break; } for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { s->itns[startvec + i] = (value >> i) & 1; } nvic_irq_update(s); break; } case 0xd04: /* Interrupt Control State (ICSR) */ if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { if (value & (1 << 31)) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); } else if (value & (1 << 30) && arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* PENDNMICLR didn't exist in v7M */ armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); } } if (value & (1 << 28)) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); } else if (value & (1 << 27)) { armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); } if (value & (1 << 26)) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); } else if (value & (1 << 25)) { armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); } break; case 0xd08: /* Vector Table Offset. */ cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; break; case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { if (attrs.secure || !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { qemu_irq_pulse(s->sysresetreq); } } if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { qemu_log_mask(LOG_GUEST_ERROR, "Setting VECTCLRACTIVE when not in DEBUG mode " "is UNPREDICTABLE\n"); } if (value & R_V7M_AIRCR_VECTRESET_MASK) { /* NB: this bit is RES0 in v8M */ qemu_log_mask(LOG_GUEST_ERROR, "Setting VECTRESET when not in DEBUG mode " "is UNPREDICTABLE\n"); } if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { s->prigroup[attrs.secure] = extract32(value, R_V7M_AIRCR_PRIGROUP_SHIFT, R_V7M_AIRCR_PRIGROUP_LENGTH); } if (attrs.secure) { /* These bits are only writable by secure */ cpu->env.v7m.aircr = value & (R_V7M_AIRCR_SYSRESETREQS_MASK | R_V7M_AIRCR_BFHFNMINS_MASK | R_V7M_AIRCR_PRIS_MASK); /* BFHFNMINS changes the priority of Secure HardFault, and * allows a pending Non-secure HardFault to preempt (which * we implement by marking it enabled). */ if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; s->vectors[ARMV7M_EXCP_HARD].enabled = 1; } else { s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; s->vectors[ARMV7M_EXCP_HARD].enabled = 0; } } nvic_irq_update(s); } break; case 0xd10: /* System Control. */ if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { goto bad_offset; } /* We don't implement deep-sleep so these bits are RAZ/WI. * The other bits in the register are banked. * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which * is architecturally permitted. */ value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); cpu->env.v7m.scr[attrs.secure] = value; break; case 0xd14: /* Configuration Control. */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ value &= (R_V7M_CCR_STKALIGN_MASK | R_V7M_CCR_BFHFNMIGN_MASK | R_V7M_CCR_DIV_0_TRP_MASK | R_V7M_CCR_UNALIGN_TRP_MASK | R_V7M_CCR_USERSETMPEND_MASK | R_V7M_CCR_NONBASETHRDENA_MASK); if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ value |= R_V7M_CCR_NONBASETHRDENA_MASK | R_V7M_CCR_STKALIGN_MASK; } if (attrs.secure) { /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ cpu->env.v7m.ccr[M_REG_NS] = (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) | (value & R_V7M_CCR_BFHFNMIGN_MASK); value &= ~R_V7M_CCR_BFHFNMIGN_MASK; } cpu->env.v7m.ccr[attrs.secure] = value; break; case 0xd24: /* System Handler Control and State (SHCSR) */ if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { goto bad_offset; } if (attrs.secure) { s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; /* Secure HardFault active bit cannot be written */ s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; s->sec_vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; s->sec_vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; /* SecureFault not banked, but RAZ/WI to NS */ s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; } else { s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* HARDFAULTPENDED is not present in v7M */ s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; } s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; } if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; } /* NMIACT can only be written if the write is of a zero, with * BFHFNMINS 1, and by the CPU in secure state via the NS alias. */ if (!attrs.secure && cpu->env.v7m.secure && (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && (value & (1 << 5)) == 0) { s->vectors[ARMV7M_EXCP_NMI].active = 0; } /* HARDFAULTACT can only be written if the write is of a zero * to the non-secure HardFault state by the CPU in secure state. * The only case where we can be targeting the non-secure HF state * when in secure state is if this is a write via the NS alias * and BFHFNMINS is 1. */ if (!attrs.secure && cpu->env.v7m.secure && (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && (value & (1 << 2)) == 0) { s->vectors[ARMV7M_EXCP_HARD].active = 0; } /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; nvic_irq_update(s); break; case 0xd2c: /* Hard Fault Status. */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } cpu->env.v7m.hfsr &= ~value; /* W1C */ break; case 0xd30: /* Debug Fault Status. */ cpu->env.v7m.dfsr &= ~value; /* W1C */ break; case 0xd34: /* Mem Manage Address. */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } cpu->env.v7m.mmfar[attrs.secure] = value; return; case 0xd38: /* Bus Fault Address. */ if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } if (!attrs.secure && !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { return; } cpu->env.v7m.bfar = value; return; case 0xd3c: /* Aux Fault Status. */ qemu_log_mask(LOG_UNIMP, "NVIC: Aux fault status registers unimplemented\n"); break; case 0xd84: /* CSSELR */ if (!arm_v7m_csselr_razwi(cpu)) { cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; } break; case 0xd88: /* CPACR */ if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { /* We implement only the Floating Point extension's CP10/CP11 */ cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); } break; case 0xd8c: /* NSACR */ if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) { /* We implement only the Floating Point extension's CP10/CP11 */ cpu->env.v7m.nsacr = value & (3 << 10); } break; case 0xd90: /* MPU_TYPE */ return; /* RO */ case 0xd94: /* MPU_CTRL */ if ((value & (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) == R_V7M_MPU_CTRL_HFNMIENA_MASK) { qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " "UNPREDICTABLE\n"); } cpu->env.v7m.mpu_ctrl[attrs.secure] = value & (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_PRIVDEFENA_MASK); tlb_flush(CPU(cpu)); break; case 0xd98: /* MPU_RNR */ if (value >= cpu->pmsav7_dregion) { qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" PRIu32 "/%" PRIu32 "\n", value, cpu->pmsav7_dregion); } else { cpu->env.pmsav7.rnr[attrs.secure] = value; } break; case 0xd9c: /* MPU_RBAR */ case 0xda4: /* MPU_RBAR_A1 */ case 0xdac: /* MPU_RBAR_A2 */ case 0xdb4: /* MPU_RBAR_A3 */ { int region; if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* PMSAv8M handling of the aliases is different from v7M: * aliases A1, A2, A3 override the low two bits of the region * number in MPU_RNR, and there is no 'region' field in the * RBAR register. */ int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ region = cpu->env.pmsav7.rnr[attrs.secure]; if (aliasno) { region = deposit32(region, 0, 2, aliasno); } if (region >= cpu->pmsav7_dregion) { return; } cpu->env.pmsav8.rbar[attrs.secure][region] = value; tlb_flush(CPU(cpu)); return; } if (value & (1 << 4)) { /* VALID bit means use the region number specified in this * value and also update MPU_RNR.REGION with that value. */ region = extract32(value, 0, 4); if (region >= cpu->pmsav7_dregion) { qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %u/%" PRIu32 "\n", region, cpu->pmsav7_dregion); return; } cpu->env.pmsav7.rnr[attrs.secure] = region; } else { region = cpu->env.pmsav7.rnr[attrs.secure]; } if (region >= cpu->pmsav7_dregion) { return; } cpu->env.pmsav7.drbar[region] = value & ~0x1f; tlb_flush(CPU(cpu)); break; } case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ { int region = cpu->env.pmsav7.rnr[attrs.secure]; if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* PMSAv8M handling of the aliases is different from v7M: * aliases A1, A2, A3 override the low two bits of the region * number in MPU_RNR. */ int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ region = cpu->env.pmsav7.rnr[attrs.secure]; if (aliasno) { region = deposit32(region, 0, 2, aliasno); } if (region >= cpu->pmsav7_dregion) { return; } cpu->env.pmsav8.rlar[attrs.secure][region] = value; tlb_flush(CPU(cpu)); return; } if (region >= cpu->pmsav7_dregion) { return; } cpu->env.pmsav7.drsr[region] = value & 0xff3f; cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; tlb_flush(CPU(cpu)); break; } case 0xdc0: /* MPU_MAIR0 */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (cpu->pmsav7_dregion) { /* Register is RES0 if no MPU regions are implemented */ cpu->env.pmsav8.mair0[attrs.secure] = value; } /* We don't need to do anything else because memory attributes * only affect cacheability, and we don't implement caching. */ break; case 0xdc4: /* MPU_MAIR1 */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (cpu->pmsav7_dregion) { /* Register is RES0 if no MPU regions are implemented */ cpu->env.pmsav8.mair1[attrs.secure] = value; } /* We don't need to do anything else because memory attributes * only affect cacheability, and we don't implement caching. */ break; case 0xdd0: /* SAU_CTRL */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return; } cpu->env.sau.ctrl = value & 3; break; case 0xdd4: /* SAU_TYPE */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } break; case 0xdd8: /* SAU_RNR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return; } if (value >= cpu->sau_sregion) { qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" PRIu32 "/%" PRIu32 "\n", value, cpu->sau_sregion); } else { cpu->env.sau.rnr = value; } break; case 0xddc: /* SAU_RBAR */ { int region = cpu->env.sau.rnr; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return; } if (region >= cpu->sau_sregion) { return; } cpu->env.sau.rbar[region] = value & ~0x1f; tlb_flush(CPU(cpu)); break; } case 0xde0: /* SAU_RLAR */ { int region = cpu->env.sau.rnr; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return; } if (region >= cpu->sau_sregion) { return; } cpu->env.sau.rlar[region] = value & ~0x1c; tlb_flush(CPU(cpu)); break; } case 0xde4: /* SFSR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return; } cpu->env.v7m.sfsr &= ~value; /* W1C */ break; case 0xde8: /* SFAR */ if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { goto bad_offset; } if (!attrs.secure) { return; } cpu->env.v7m.sfsr = value; break; case 0xf00: /* Software Triggered Interrupt Register */ { int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { goto bad_offset; } if (excnum < s->num_irq) { armv7m_nvic_set_pending(s, excnum, false); } break; } case 0xf34: /* FPCCR */ if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { /* Not all bits here are banked. */ uint32_t fpccr_s; if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { /* Don't allow setting of bits not present in v7M */ value &= (R_V7M_FPCCR_LSPACT_MASK | R_V7M_FPCCR_USER_MASK | R_V7M_FPCCR_THREAD_MASK | R_V7M_FPCCR_HFRDY_MASK | R_V7M_FPCCR_MMRDY_MASK | R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_MONRDY_MASK | R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_ASPEN_MASK); } value &= ~R_V7M_FPCCR_RES0_MASK; if (!attrs.secure) { /* Some non-banked bits are configurably writable by NS */ fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); } if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); } if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); } /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ { uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); } /* * All other non-banked bits are RAZ/WI from NS; write * just the banked bits to fpccr[M_REG_NS]. */ value &= R_V7M_FPCCR_BANKED_MASK; cpu->env.v7m.fpccr[M_REG_NS] = value; } else { fpccr_s = value; } cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; } break; case 0xf38: /* FPCAR */ if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { value &= ~7; cpu->env.v7m.fpcar[attrs.secure] = value; } break; case 0xf3c: /* FPDSCR */ if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { value &= 0x07c00000; cpu->env.v7m.fpdscr[attrs.secure] = value; } break; case 0xf50: /* ICIALLU */ case 0xf58: /* ICIMVAU */ case 0xf5c: /* DCIMVAC */ case 0xf60: /* DCISW */ case 0xf64: /* DCCMVAU */ case 0xf68: /* DCCMVAC */ case 0xf6c: /* DCCSW */ case 0xf70: /* DCCIMVAC */ case 0xf74: /* DCCISW */ case 0xf78: /* BPIALL */ /* Cache and branch predictor maintenance: for QEMU these always NOP */ break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad write offset 0x%x\n", offset); } } static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) { /* Return true if unprivileged access to this register is permitted. */ switch (offset) { case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ /* For access via STIR_NS it is the NS CCR.USERSETMPEND that * controls access even though the CPU is in Secure state (I_QDKX). */ return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; default: /* All other user accesses cause a BusFault unconditionally */ return false; } } static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) { /* Behaviour for the SHPR register field for this exception: * return M_REG_NS to use the nonsecure vector (including for * non-banked exceptions), M_REG_S for the secure version of * a banked exception, and -1 if this field should RAZ/WI. */ switch (exc) { case ARMV7M_EXCP_MEM: case ARMV7M_EXCP_USAGE: case ARMV7M_EXCP_SVC: case ARMV7M_EXCP_PENDSV: case ARMV7M_EXCP_SYSTICK: /* Banked exceptions */ return attrs.secure; case ARMV7M_EXCP_BUS: /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ if (!attrs.secure && !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { return -1; } return M_REG_NS; case ARMV7M_EXCP_SECURE: /* Not banked, RAZ/WI from nonsecure */ if (!attrs.secure) { return -1; } return M_REG_NS; case ARMV7M_EXCP_DEBUG: /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ return M_REG_NS; case 8 ... 10: case 13: /* RES0 */ return -1; default: /* Not reachable due to decode of SHPR register addresses */ g_assert_not_reached(); } } static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { NVICState *s = (NVICState *)opaque; uint32_t offset = addr; unsigned i, startvec, end; uint32_t val; if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { /* Generate BusFault for unprivileged accesses */ return MEMTX_ERROR; } switch (offset) { /* reads of set and clear both return the status */ case 0x100 ... 0x13f: /* NVIC Set enable */ offset += 0x80; /* fall through */ case 0x180 ... 0x1bf: /* NVIC Clear enable */ val = 0; startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { if (s->vectors[startvec + i].enabled && (attrs.secure || s->itns[startvec + i])) { val |= (1 << i); } } break; case 0x200 ... 0x23f: /* NVIC Set pend */ offset += 0x80; /* fall through */ case 0x280 ... 0x2bf: /* NVIC Clear pend */ val = 0; startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { if (s->vectors[startvec + i].pending && (attrs.secure || s->itns[startvec + i])) { val |= (1 << i); } } break; case 0x300 ... 0x33f: /* NVIC Active */ val = 0; if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { break; } startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { if (s->vectors[startvec + i].active && (attrs.secure || s->itns[startvec + i])) { val |= (1 << i); } } break; case 0x400 ... 0x5ef: /* NVIC Priority */ val = 0; startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ for (i = 0; i < size && startvec + i < s->num_irq; i++) { if (attrs.secure || s->itns[startvec + i]) { val |= s->vectors[startvec + i].prio << (8 * i); } } break; case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { val = 0; break; } /* fall through */ case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ val = 0; for (i = 0; i < size; i++) { unsigned hdlidx = (offset - 0xd14) + i; int sbank = shpr_bank(s, hdlidx, attrs); if (sbank < 0) { continue; } val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); } break; case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { val = 0; break; }; /* * The BFSR bits [15:8] are shared between security states * and we store them in the NS copy. They are RAZ/WI for * NS code if AIRCR.BFHFNMINS is 0. */ val = s->cpu->env.v7m.cfsr[attrs.secure]; if (!attrs.secure && !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { val &= ~R_V7M_CFSR_BFSR_MASK; } else { val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; } val = extract32(val, (offset - 0xd28) * 8, size * 8); break; case 0xfe0 ... 0xfff: /* ID. */ if (offset & 3) { val = 0; } else { val = nvic_id[(offset - 0xfe0) >> 2]; } break; default: if (size == 4) { val = nvic_readl(s, offset, attrs); } else { qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read of size %d at offset 0x%x\n", size, offset); val = 0; } } trace_nvic_sysreg_read(addr, val, size); *data = val; return MEMTX_OK; } static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { NVICState *s = (NVICState *)opaque; uint32_t offset = addr; unsigned i, startvec, end; unsigned setval = 0; trace_nvic_sysreg_write(addr, value, size); if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { /* Generate BusFault for unprivileged accesses */ return MEMTX_ERROR; } switch (offset) { case 0x100 ... 0x13f: /* NVIC Set enable */ offset += 0x80; setval = 1; /* fall through */ case 0x180 ... 0x1bf: /* NVIC Clear enable */ startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { if (value & (1 << i) && (attrs.secure || s->itns[startvec + i])) { s->vectors[startvec + i].enabled = setval; } } nvic_irq_update(s); return MEMTX_OK; case 0x200 ... 0x23f: /* NVIC Set pend */ /* the special logic in armv7m_nvic_set_pending() * is not needed since IRQs are never escalated */ offset += 0x80; setval = 1; /* fall through */ case 0x280 ... 0x2bf: /* NVIC Clear pend */ startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { if (value & (1 << i) && (attrs.secure || s->itns[startvec + i])) { s->vectors[startvec + i].pending = setval; } } nvic_irq_update(s); return MEMTX_OK; case 0x300 ... 0x33f: /* NVIC Active */ return MEMTX_OK; /* R/O */ case 0x400 ... 0x5ef: /* NVIC Priority */ startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ for (i = 0; i < size && startvec + i < s->num_irq; i++) { if (attrs.secure || s->itns[startvec + i]) { set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); } } nvic_irq_update(s); return MEMTX_OK; case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { return MEMTX_OK; } /* fall through */ case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ for (i = 0; i < size; i++) { unsigned hdlidx = (offset - 0xd14) + i; int newprio = extract32(value, i * 8, 8); int sbank = shpr_bank(s, hdlidx, attrs); if (sbank < 0) { continue; } set_prio(s, hdlidx, sbank, newprio); } nvic_irq_update(s); return MEMTX_OK; case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { return MEMTX_OK; } /* All bits are W1C, so construct 32 bit value with 0s in * the parts not written by the access size */ value <<= ((offset - 0xd28) * 8); if (!attrs.secure && !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ value &= ~R_V7M_CFSR_BFSR_MASK; } s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; if (attrs.secure) { /* The BFSR bits [15:8] are shared between security states * and we store them in the NS copy. */ s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); } return MEMTX_OK; } if (size == 4) { nvic_writel(s, offset, value, attrs); return MEMTX_OK; } qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); /* This is UNPREDICTABLE; treat as RAZ/WI */ return MEMTX_OK; } static const MemoryRegionOps nvic_sysreg_ops = { .read_with_attrs = nvic_sysreg_read, .write_with_attrs = nvic_sysreg_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { MemoryRegion *mr = opaque; if (attrs.secure) { /* S accesses to the alias act like NS accesses to the real region */ attrs.secure = 0; return memory_region_dispatch_write(mr, addr, value, size, attrs); } else { /* NS attrs are RAZ/WI for privileged, and BusFault for user */ if (attrs.user) { return MEMTX_ERROR; } return MEMTX_OK; } } static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { MemoryRegion *mr = opaque; if (attrs.secure) { /* S accesses to the alias act like NS accesses to the real region */ attrs.secure = 0; return memory_region_dispatch_read(mr, addr, data, size, attrs); } else { /* NS attrs are RAZ/WI for privileged, and BusFault for user */ if (attrs.user) { return MEMTX_ERROR; } *data = 0; return MEMTX_OK; } } static const MemoryRegionOps nvic_sysreg_ns_ops = { .read_with_attrs = nvic_sysreg_ns_read, .write_with_attrs = nvic_sysreg_ns_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { NVICState *s = opaque; MemoryRegion *mr; /* Direct the access to the correct systick */ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); return memory_region_dispatch_write(mr, addr, value, size, attrs); } static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { NVICState *s = opaque; MemoryRegion *mr; /* Direct the access to the correct systick */ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); return memory_region_dispatch_read(mr, addr, data, size, attrs); } static const MemoryRegionOps nvic_systick_ops = { .read_with_attrs = nvic_systick_read, .write_with_attrs = nvic_systick_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int nvic_post_load(void *opaque, int version_id) { NVICState *s = opaque; unsigned i; int resetprio; /* Check for out of range priority settings */ resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || s->vectors[ARMV7M_EXCP_NMI].prio != -2 || s->vectors[ARMV7M_EXCP_HARD].prio != -1) { return 1; } for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { if (s->vectors[i].prio & ~0xff) { return 1; } } nvic_recompute_state(s); return 0; } static const VMStateDescription vmstate_VecInfo = { .name = "armv7m_nvic_info", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_INT16(prio, VecInfo), VMSTATE_UINT8(enabled, VecInfo), VMSTATE_UINT8(pending, VecInfo), VMSTATE_UINT8(active, VecInfo), VMSTATE_UINT8(level, VecInfo), VMSTATE_END_OF_LIST() } }; static bool nvic_security_needed(void *opaque) { NVICState *s = opaque; return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); } static int nvic_security_post_load(void *opaque, int version_id) { NVICState *s = opaque; int i; /* Check for out of range priority settings */ if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { /* We can't cross-check against AIRCR.BFHFNMINS as we don't know * if the CPU state has been migrated yet; a mismatch won't * cause the emulation to blow up, though. */ return 1; } for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { if (s->sec_vectors[i].prio & ~0xff) { return 1; } } return 0; } static const VMStateDescription vmstate_nvic_security = { .name = "armv7m_nvic/m-security", .version_id = 1, .minimum_version_id = 1, .needed = nvic_security_needed, .post_load = &nvic_security_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, vmstate_VecInfo, VecInfo), VMSTATE_UINT32(prigroup[M_REG_S], NVICState), VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_nvic = { .name = "armv7m_nvic", .version_id = 4, .minimum_version_id = 4, .post_load = &nvic_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, vmstate_VecInfo, VecInfo), VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_nvic_security, NULL } }; static Property props_nvic[] = { /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), DEFINE_PROP_END_OF_LIST() }; static void armv7m_nvic_reset(DeviceState *dev) { int resetprio; NVICState *s = NVIC(dev); memset(s->vectors, 0, sizeof(s->vectors)); memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); s->prigroup[M_REG_NS] = 0; s->prigroup[M_REG_S] = 0; s->vectors[ARMV7M_EXCP_NMI].enabled = 1; /* MEM, BUS, and USAGE are enabled through * the System Handler Control register */ s->vectors[ARMV7M_EXCP_SVC].enabled = 1; s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; /* DebugMonitor is enabled via DEMCR.MON_EN */ s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; s->vectors[ARMV7M_EXCP_NMI].prio = -2; s->vectors[ARMV7M_EXCP_HARD].prio = -1; if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ s->vectors[ARMV7M_EXCP_HARD].enabled = 0; } else { s->vectors[ARMV7M_EXCP_HARD].enabled = 1; } /* Strictly speaking the reset handler should be enabled. * However, we don't simulate soft resets through the NVIC, * and the reset vector should never be pended. * So we leave it disabled to catch logic errors. */ s->exception_prio = NVIC_NOEXC_PRIO; s->vectpending = 0; s->vectpending_is_s_banked = false; s->vectpending_prio = NVIC_NOEXC_PRIO; if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { memset(s->itns, 0, sizeof(s->itns)); } else { /* This state is constant and not guest accessible in a non-security * NVIC; we set the bits to true to avoid having to do a feature * bit check in the NVIC enable/pend/etc register accessors. */ int i; for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { s->itns[i] = true; } } } static void nvic_systick_trigger(void *opaque, int n, int level) { NVICState *s = opaque; if (level) { /* SysTick just asked us to pend its exception. * (This is different from an external interrupt line's * behaviour.) * n == 0 : NonSecure systick * n == 1 : Secure systick */ armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); } } static void armv7m_nvic_realize(DeviceState *dev, Error **errp) { NVICState *s = NVIC(dev); Error *err = NULL; int regionlen; /* The armv7m container object will have set our CPU pointer */ if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); return; } if (s->num_irq > NVIC_MAX_IRQ) { error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); return; } qdev_init_gpio_in(dev, set_irq_level, s->num_irq); /* include space for internal exception vectors */ s->num_irq += NVIC_FIRST_IRQ; s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, qdev_get_gpio_in_named(dev, "systick-trigger", M_REG_NS)); if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { /* We couldn't init the secure systick device in instance_init * as we didn't know then if the CPU had the security extensions; * so we have to do it here. */ object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), TYPE_SYSTICK); qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, qdev_get_gpio_in_named(dev, "systick-trigger", M_REG_S)); } /* The NVIC and System Control Space (SCS) starts at 0xe000e000 * and looks like this: * 0x004 - ICTR * 0x010 - 0xff - systick * 0x100..0x7ec - NVIC * 0x7f0..0xcff - Reserved * 0xd00..0xd3c - SCS registers * 0xd40..0xeff - Reserved or Not implemented * 0xf00 - STIR * * Some registers within this space are banked between security states. * In v8M there is a second range 0xe002e000..0xe002efff which is the * NonSecure alias SCS; secure accesses to this behave like NS accesses * to the main SCS range, and non-secure accesses (including when * the security extension is not implemented) are RAZ/WI. * Note that both the main SCS range and the alias range are defined * to be exempt from memory attribution (R_BLJT) and so the memory * transaction attribute always matches the current CPU security * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops * wrappers we change attrs.secure to indicate the NS access; so * generally code determining which banked register to use should * use attrs.secure; code determining actual behaviour of the system * should use env->v7m.secure. */ regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); /* The system register region goes at the bottom of the priority * stack as it covers the whole page. */ memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, "nvic_sysregs", 0x1000); memory_region_add_subregion(&s->container, 0, &s->sysregmem); memory_region_init_io(&s->systickmem, OBJECT(s), &nvic_systick_ops, s, "nvic_systick", 0xe0); memory_region_add_subregion_overlap(&s->container, 0x10, &s->systickmem, 1); if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), &nvic_sysreg_ns_ops, &s->sysregmem, "nvic_sysregs_ns", 0x1000); memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); memory_region_init_io(&s->systick_ns_mem, OBJECT(s), &nvic_sysreg_ns_ops, &s->systickmem, "nvic_systick_ns", 0xe0); memory_region_add_subregion_overlap(&s->container, 0x20010, &s->systick_ns_mem, 1); } sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); } static void armv7m_nvic_instance_init(Object *obj) { /* We have a different default value for the num-irq property * than our superclass. This function runs after qdev init * has set the defaults from the Property array and before * any user-specified property setting, so just modify the * value in the GICState struct. */ DeviceState *dev = DEVICE(obj); NVICState *nvic = NVIC(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); /* We can't initialize the secure systick here, as we don't know * yet if we need it. */ sysbus_init_irq(sbd, &nvic->excpout); qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", M_REG_NUM_BANKS); qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); } static void armv7m_nvic_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_nvic; dc->props = props_nvic; dc->reset = armv7m_nvic_reset; dc->realize = armv7m_nvic_realize; } static const TypeInfo armv7m_nvic_info = { .name = TYPE_NVIC, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = armv7m_nvic_instance_init, .instance_size = sizeof(NVICState), .class_init = armv7m_nvic_class_init, .class_size = sizeof(SysBusDeviceClass), }; static void armv7m_nvic_register_types(void) { type_register_static(&armv7m_nvic_info); } type_init(armv7m_nvic_register_types)