/* * QEMU AArch64 TCG CPUs * * Copyright (c) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "qemu/module.h" #include "qapi/visitor.h" #include "hw/qdev-properties.h" #include "qemu/units.h" #include "internals.h" #include "cpregs.h" static uint64_t make_ccsidr64(unsigned assoc, unsigned linesize, unsigned cachesize) { unsigned lg_linesize = ctz32(linesize); unsigned sets; /* * The 64-bit CCSIDR_EL1 format is: * [55:32] number of sets - 1 * [23:3] associativity - 1 * [2:0] log2(linesize) - 4 * so 0 == 16 bytes, 1 == 32 bytes, 2 == 64 bytes, etc */ assert(assoc != 0); assert(is_power_of_2(linesize)); assert(lg_linesize >= 4 && lg_linesize <= 7 + 4); /* sets * associativity * linesize == cachesize. */ sets = cachesize / (assoc * linesize); assert(cachesize % (assoc * linesize) == 0); return ((uint64_t)(sets - 1) << 32) | ((assoc - 1) << 3) | (lg_linesize - 4); } static void aarch64_a35_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a35"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* From B2.2 AArch64 identification registers. */ cpu->midr = 0x411fd040; cpu->revidr = 0; cpu->ctr = 0x84448004; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64pfr1 = 0; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64dfr1 = 0; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64isar1 = 0; cpu->isar.id_aa64mmfr0 = 0x00101122; cpu->isar.id_aa64mmfr1 = 0; cpu->clidr = 0x0a200023; cpu->dcz_blocksize = 4; /* From B2.4 AArch64 Virtual Memory control registers */ cpu->reset_sctlr = 0x00c50838; /* From B2.10 AArch64 performance monitor registers */ cpu->isar.reset_pmcr_el0 = 0x410a3000; /* From B2.29 Cache ID registers */ cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */ /* From B3.5 VGIC Type register */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From C6.4 Debug ID Register */ cpu->isar.dbgdidr = 0x3516d000; /* From C6.5 Debug Device ID Register */ cpu->isar.dbgdevid = 0x00110f13; /* From C6.6 Debug Device ID Register 1 */ cpu->isar.dbgdevid1 = 0x2; /* From Cortex-A35 SIMD and Floating-point Support r1p0 */ /* From 3.2 AArch32 register summary */ cpu->reset_fpsid = 0x41034043; /* From 2.2 AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; /* These values are the same with A53/A57/A72. */ define_cortex_a72_a57_a53_cp_reginfo(cpu); } static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t value; /* All vector lengths are disabled when SVE is off. */ if (!cpu_isar_feature(aa64_sve, cpu)) { value = 0; } else { value = cpu->sve_max_vq; } visit_type_uint32(v, name, &value, errp); } static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t max_vq; if (!visit_type_uint32(v, name, &max_vq, errp)) { return; } if (max_vq == 0 || max_vq > ARM_MAX_VQ) { error_setg(errp, "unsupported SVE vector length"); error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", ARM_MAX_VQ); return; } cpu->sve_max_vq = max_vq; } static bool cpu_arm_get_rme(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return cpu_isar_feature(aa64_rme, cpu); } static void cpu_arm_set_rme(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint64_t t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, RME, value); cpu->isar.id_aa64pfr0 = t; } static void cpu_max_set_l0gptsz(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t value; if (!visit_type_uint32(v, name, &value, errp)) { return; } /* Encode the value for the GPCCR_EL3 field. */ switch (value) { case 30: case 34: case 36: case 39: cpu->reset_l0gptsz = value - 30; break; default: error_setg(errp, "invalid value for l0gptsz"); error_append_hint(errp, "valid values are 30, 34, 36, 39\n"); break; } } static void cpu_max_get_l0gptsz(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t value = cpu->reset_l0gptsz + 30; visit_type_uint32(v, name, &value, errp); } static Property arm_cpu_lpa2_property = DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true); static void aarch64_a55_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a55"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by B2.4 AArch64 registers by functional group */ cpu->clidr = 0x82000023; cpu->ctr = 0x84448004; /* L1Ip = VIPT */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->isar.id_aa64dfr0 = 0x0000000010305408ull; cpu->isar.id_aa64isar0 = 0x0000100010211120ull; cpu->isar.id_aa64isar1 = 0x0000000000100001ull; cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull; cpu->isar.id_aa64pfr0 = 0x0000000010112222ull; cpu->isar.id_aa64pfr1 = 0x0000000000000010ull; cpu->id_afr0 = 0x00000000; cpu->isar.id_dfr0 = 0x04010088; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x01011121; cpu->isar.id_isar6 = 0x00000010; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_mmfr4 = 0x00021110; cpu->isar.id_pfr0 = 0x10010131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_pfr2 = 0x00000011; cpu->midr = 0x412FD050; /* r2p0 */ cpu->revidr = 0; /* From B2.23 CCSIDR_EL1 */ cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x200fe01a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x703fe07a; /* 512KB L2 cache */ /* From B2.96 SCTLR_EL3 */ cpu->reset_sctlr = 0x30c50838; /* From B4.45 ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; /* From D5.4 AArch64 PMU register summary */ cpu->isar.reset_pmcr_el0 = 0x410b3000; } static void aarch64_a72_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a72"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->midr = 0x410fd083; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034080; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->isar.dbgdevid = 0x01110f13; cpu->isar.dbgdevid1 = 0x2; cpu->isar.reset_pmcr_el0 = 0x41023000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; define_cortex_a72_a57_a53_cp_reginfo(cpu); } static void aarch64_a76_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a76"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by B2.4 AArch64 registers by functional group */ cpu->clidr = 0x82000023; cpu->ctr = 0x8444C004; cpu->dcz_blocksize = 4; cpu->isar.id_aa64dfr0 = 0x0000000010305408ull; cpu->isar.id_aa64isar0 = 0x0000100010211120ull; cpu->isar.id_aa64isar1 = 0x0000000000100001ull; cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull; cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */ cpu->isar.id_aa64pfr1 = 0x0000000000000010ull; cpu->id_afr0 = 0x00000000; cpu->isar.id_dfr0 = 0x04010088; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00010142; cpu->isar.id_isar5 = 0x01011121; cpu->isar.id_isar6 = 0x00000010; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_mmfr4 = 0x00021110; cpu->isar.id_pfr0 = 0x10010131; cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */ cpu->isar.id_pfr2 = 0x00000011; cpu->midr = 0x414fd0b1; /* r4p1 */ cpu->revidr = 0; /* From B2.18 CCSIDR_EL1 */ cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */ cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */ cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */ /* From B2.93 SCTLR_EL3 */ cpu->reset_sctlr = 0x30c50838; /* From B4.23 ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From B5.1 AdvSIMD AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; /* From D5.1 AArch64 PMU register summary */ cpu->isar.reset_pmcr_el0 = 0x410b3000; } static void aarch64_a64fx_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,a64fx"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->midr = 0x461f0010; cpu->revidr = 0x00000000; cpu->ctr = 0x86668006; cpu->reset_sctlr = 0x30000180; cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */ cpu->isar.id_aa64pfr1 = 0x0000000000000000; cpu->isar.id_aa64dfr0 = 0x0000000010305408; cpu->isar.id_aa64dfr1 = 0x0000000000000000; cpu->id_aa64afr0 = 0x0000000000000000; cpu->id_aa64afr1 = 0x0000000000000000; cpu->isar.id_aa64mmfr0 = 0x0000000000001122; cpu->isar.id_aa64mmfr1 = 0x0000000011212100; cpu->isar.id_aa64mmfr2 = 0x0000000000001011; cpu->isar.id_aa64isar0 = 0x0000000010211120; cpu->isar.id_aa64isar1 = 0x0000000000010001; cpu->isar.id_aa64zfr0 = 0x0000000000000000; cpu->clidr = 0x0000000080000023; cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */ cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */ cpu->dcz_blocksize = 6; /* 256 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* The A64FX supports only 128, 256 and 512 bit vector lengths */ aarch64_add_sve_properties(obj); cpu->sve_vq.supported = (1 << 0) /* 128bit */ | (1 << 1) /* 256bit */ | (1 << 3); /* 512bit */ cpu->isar.reset_pmcr_el0 = 0x46014040; /* TODO: Add A64FX specific HPC extension registers */ } static CPAccessResult access_actlr_w(CPUARMState *env, const ARMCPRegInfo *r, bool read) { if (!read) { int el = arm_current_el(env); /* Because ACTLR_EL2 is constant 0, writes below EL2 trap to EL2. */ if (el < 2 && arm_is_el2_enabled(env)) { return CP_ACCESS_TRAP_EL2; } /* Because ACTLR_EL3 is constant 0, writes below EL3 trap to EL3. */ if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { return CP_ACCESS_TRAP_EL3; } } return CP_ACCESS_OK; } static const ARMCPRegInfo neoverse_n1_cp_reginfo[] = { { .name = "ATCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 7, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, /* Traps and enables are the same as for TCR_EL1. */ .accessfn = access_tvm_trvm, .fgt = FGT_TCR_EL1, }, { .name = "ATCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ATCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 7, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ATCR_EL12", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 5, .crn = 15, .crm = 7, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AVTCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR3_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, /* * Report CPUCFR_EL1.SCU as 1, as we do not implement the DSU * (and in particular its system registers). */ { .name = "CPUCFR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 4 }, { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 4, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0x961563010, .accessfn = access_actlr_w }, { .name = "CPUPCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPMR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 3, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPOR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 2, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPSELR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPWRCTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 7, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "ERXPFGCDN_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "ERXPFGCTL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "ERXPFGF_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, }; static void define_neoverse_n1_cp_reginfo(ARMCPU *cpu) { define_arm_cp_regs(cpu, neoverse_n1_cp_reginfo); } static const ARMCPRegInfo neoverse_v1_cp_reginfo[] = { { .name = "CPUECTLR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 5, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUPPMCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR2_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR3_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 6, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, }; static void define_neoverse_v1_cp_reginfo(ARMCPU *cpu) { /* * The Neoverse V1 has all of the Neoverse N1's IMPDEF * registers and a few more of its own. */ define_arm_cp_regs(cpu, neoverse_n1_cp_reginfo); define_arm_cp_regs(cpu, neoverse_v1_cp_reginfo); } static void aarch64_neoverse_n1_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,neoverse-n1"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by B2.4 AArch64 registers by functional group */ cpu->clidr = 0x82000023; cpu->ctr = 0x8444c004; cpu->dcz_blocksize = 4; cpu->isar.id_aa64dfr0 = 0x0000000110305408ull; cpu->isar.id_aa64isar0 = 0x0000100010211120ull; cpu->isar.id_aa64isar1 = 0x0000000000100001ull; cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull; cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */ cpu->isar.id_aa64pfr1 = 0x0000000000000020ull; cpu->id_afr0 = 0x00000000; cpu->isar.id_dfr0 = 0x04010088; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00010142; cpu->isar.id_isar5 = 0x01011121; cpu->isar.id_isar6 = 0x00000010; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_mmfr4 = 0x00021110; cpu->isar.id_pfr0 = 0x10010131; cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */ cpu->isar.id_pfr2 = 0x00000011; cpu->midr = 0x414fd0c1; /* r4p1 */ cpu->revidr = 0; /* From B2.23 CCSIDR_EL1 */ cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */ cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */ cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */ /* From B2.98 SCTLR_EL3 */ cpu->reset_sctlr = 0x30c50838; /* From B4.23 ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From B5.1 AdvSIMD AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; /* From D5.1 AArch64 PMU register summary */ cpu->isar.reset_pmcr_el0 = 0x410c3000; define_neoverse_n1_cp_reginfo(cpu); } static void aarch64_neoverse_v1_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,neoverse-v1"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by 3.2.4 AArch64 registers by functional group */ cpu->clidr = 0x82000023; cpu->ctr = 0xb444c004; /* With DIC and IDC set */ cpu->dcz_blocksize = 4; cpu->id_aa64afr0 = 0x00000000; cpu->id_aa64afr1 = 0x00000000; cpu->isar.id_aa64dfr0 = 0x000001f210305519ull; cpu->isar.id_aa64dfr1 = 0x00000000; cpu->isar.id_aa64isar0 = 0x1011111110212120ull; /* with FEAT_RNG */ cpu->isar.id_aa64isar1 = 0x0111000001211032ull; cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x0220011102101011ull; cpu->isar.id_aa64pfr0 = 0x1101110120111112ull; /* GIC filled in later */ cpu->isar.id_aa64pfr1 = 0x0000000000000020ull; cpu->id_afr0 = 0x00000000; cpu->isar.id_dfr0 = 0x15011099; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00010142; cpu->isar.id_isar5 = 0x11011121; cpu->isar.id_isar6 = 0x01100111; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_mmfr4 = 0x01021110; cpu->isar.id_pfr0 = 0x21110131; cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */ cpu->isar.id_pfr2 = 0x00000011; cpu->midr = 0x411FD402; /* r1p2 */ cpu->revidr = 0; /* * The Neoverse-V1 r1p2 TRM lists 32-bit format CCSIDR_EL1 values, * but also says it implements CCIDX, which means they should be * 64-bit format. So we here use values which are based on the textual * information in chapter 2 of the TRM: * * L1: 4-way set associative 64-byte line size, total size 64K. * L2: 8-way set associative, 64 byte line size, either 512K or 1MB. * L3: No L3 (this matches the CLIDR_EL1 value). */ cpu->ccsidr[0] = make_ccsidr64(4, 64, 64 * KiB); /* L1 dcache */ cpu->ccsidr[1] = cpu->ccsidr[0]; /* L1 icache */ cpu->ccsidr[2] = make_ccsidr64(8, 64, 1 * MiB); /* L2 cache */ /* From 3.2.115 SCTLR_EL3 */ cpu->reset_sctlr = 0x30c50838; /* From 3.4.8 ICC_CTLR_EL3 and 3.4.23 ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From 3.5.1 AdvSIMD AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; /* From 3.7.5 ID_AA64ZFR0_EL1 */ cpu->isar.id_aa64zfr0 = 0x0000100000100000; cpu->sve_vq.supported = (1 << 0) /* 128bit */ | (1 << 1); /* 256bit */ /* From 5.5.1 AArch64 PMU register summary */ cpu->isar.reset_pmcr_el0 = 0x41213000; define_neoverse_v1_cp_reginfo(cpu); aarch64_add_pauth_properties(obj); aarch64_add_sve_properties(obj); } static const ARMCPRegInfo cortex_a710_cp_reginfo[] = { { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR3_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR4_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 4, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUECTLR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 5, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUPPMCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 4, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPWRCTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 7, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "ATCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 7, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR5_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 8, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR6_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 8, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "CPUACTLR7_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 15, .crm = 8, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = access_actlr_w }, { .name = "ATCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AVTCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR2_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR4_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 4, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR5_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 5, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPPMCR6_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 6, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 4, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ATCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 7, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPSELR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPOR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 2, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPMR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 3, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPOR2_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 4, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPMR2_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 5, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUPFR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 6, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* * Stub RAMINDEX, as we don't actually implement caches, BTB, * or anything else with cpu internal memory. * "Read" zeros into the IDATA* and DDATA* output registers. */ { .name = "RAMINDEX_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 0, .access = PL3_W, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "IDATA0_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 0, .access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "IDATA1_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 1, .access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "IDATA2_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 2, .access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DDATA0_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 1, .opc2 = 0, .access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DDATA1_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 1, .opc2 = 1, .access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DDATA2_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 15, .crm = 1, .opc2 = 2, .access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 }, }; static void aarch64_a710_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a710"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by Section B.4: AArch64 registers */ cpu->midr = 0x412FD471; /* r2p1 */ cpu->revidr = 0; cpu->isar.id_pfr0 = 0x21110131; cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */ cpu->isar.id_dfr0 = 0x16011099; cpu->id_afr0 = 0; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00010142; cpu->isar.id_isar5 = 0x11011121; /* with Crypto */ cpu->isar.id_mmfr4 = 0x21021110; cpu->isar.id_isar6 = 0x01111111; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; cpu->isar.id_pfr2 = 0x00000011; cpu->isar.id_aa64pfr0 = 0x1201111120111112ull; /* GIC filled in later */ cpu->isar.id_aa64pfr1 = 0x0000000000000221ull; cpu->isar.id_aa64zfr0 = 0x0000110100110021ull; /* with Crypto */ cpu->isar.id_aa64dfr0 = 0x000011f010305611ull; cpu->isar.id_aa64dfr1 = 0; cpu->id_aa64afr0 = 0; cpu->id_aa64afr1 = 0; cpu->isar.id_aa64isar0 = 0x0221111110212120ull; /* with Crypto */ cpu->isar.id_aa64isar1 = 0x0010111101211032ull; cpu->isar.id_aa64mmfr0 = 0x0000022200101122ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x1221011110101011ull; cpu->clidr = 0x0000001482000023ull; cpu->gm_blocksize = 4; cpu->ctr = 0x000000049444c004ull; cpu->dcz_blocksize = 4; /* TODO FEAT_MPAM: mpamidr_el1 = 0x0000_0001_0006_003f */ /* Section B.5.2: PMCR_EL0 */ cpu->isar.reset_pmcr_el0 = 0xa000; /* with 20 counters */ /* Section B.6.7: ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* Section 14: Scalable Vector Extensions support */ cpu->sve_vq.supported = 1 << 0; /* 128bit */ /* * The cortex-a710 TRM does not list CCSIDR values. The layout of * the caches are in text in Table 7-1, Table 8-1, and Table 9-1. * * L1: 4-way set associative 64-byte line size, total either 32K or 64K. * L2: 8-way set associative 64 byte line size, total either 256K or 512K. */ cpu->ccsidr[0] = make_ccsidr64(4, 64, 64 * KiB); /* L1 dcache */ cpu->ccsidr[1] = cpu->ccsidr[0]; /* L1 icache */ cpu->ccsidr[2] = make_ccsidr64(8, 64, 512 * KiB); /* L2 cache */ /* FIXME: Not documented -- copied from neoverse-v1 */ cpu->reset_sctlr = 0x30c50838; define_arm_cp_regs(cpu, cortex_a710_cp_reginfo); aarch64_add_pauth_properties(obj); aarch64_add_sve_properties(obj); } /* * -cpu max: a CPU with as many features enabled as our emulation supports. * The version of '-cpu max' for qemu-system-arm is defined in cpu32.c; * this only needs to handle 64 bits. */ void aarch64_max_tcg_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); uint64_t t; uint32_t u; /* * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real * one and try to apply errata workarounds or use impdef features we * don't provide. * An IMPLEMENTER field of 0 means "reserved for software use"; * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers * to see which features are present"; * the VARIANT, PARTNUM and REVISION fields are all implementation * defined and we choose to define PARTNUM just in case guest * code needs to distinguish this QEMU CPU from other software * implementations, though this shouldn't be needed. */ t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); cpu->midr = t; /* * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS} * are zero. */ u = cpu->clidr; u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0); u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0); cpu->clidr = u; t = cpu->isar.id_aa64isar0; t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */ t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); /* FEAT_CRC32 */ t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */ t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */ t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */ t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */ t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */ t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */ t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */ t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */ t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */ cpu->isar.id_aa64isar0 = t; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */ t = FIELD_DP64(t, ID_AA64ISAR1, APA, PauthFeat_FPACCOMBINED); t = FIELD_DP64(t, ID_AA64ISAR1, API, 1); t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */ t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */ t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */ t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */ t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */ t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */ t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */ t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */ t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */ cpu->isar.id_aa64isar1 = t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */ t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */ t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */ t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */ t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */ t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */ t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */ cpu->isar.id_aa64pfr0 = t; t = cpu->isar.id_aa64pfr1; t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */ t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */ /* * Begin with full support for MTE. This will be downgraded to MTE=0 * during realize if the board provides no tag memory, much like * we do for EL2 with the virtualization=on property. */ t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */ t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */ t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */ cpu->isar.id_aa64pfr1 = t; t = cpu->isar.id_aa64mmfr0; t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */ t = FIELD_DP64(t, ID_AA64MMFR0, FGT, 1); /* FEAT_FGT */ cpu->isar.id_aa64mmfr0 = t; t = cpu->isar.id_aa64mmfr1; t = FIELD_DP64(t, ID_AA64MMFR1, HAFDBS, 2); /* FEAT_HAFDBS */ t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */ t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */ t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 2); /* FEAT_HPDS2 */ t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */ t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 3); /* FEAT_PAN3 */ t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */ t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */ t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */ cpu->isar.id_aa64mmfr1 = t; t = cpu->isar.id_aa64mmfr2; t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */ t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */ t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */ t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */ t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */ t = FIELD_DP64(t, ID_AA64MMFR2, AT, 1); /* FEAT_LSE2 */ t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */ t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */ t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */ t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */ t = FIELD_DP64(t, ID_AA64MMFR2, EVT, 2); /* FEAT_EVT */ t = FIELD_DP64(t, ID_AA64MMFR2, E0PD, 1); /* FEAT_E0PD */ cpu->isar.id_aa64mmfr2 = t; t = cpu->isar.id_aa64zfr0; t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1); t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */ t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */ t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */ t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */ t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */ t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */ t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */ t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */ cpu->isar.id_aa64zfr0 = t; t = cpu->isar.id_aa64dfr0; t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */ t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */ cpu->isar.id_aa64dfr0 = t; t = cpu->isar.id_aa64smfr0; t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */ t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */ t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */ cpu->isar.id_aa64smfr0 = t; /* Replicate the same data to the 32-bit id registers. */ aa32_max_features(cpu); #ifdef CONFIG_USER_ONLY /* * For usermode -cpu max we can use a larger and more efficient DCZ * blocksize since we don't have to follow what the hardware does. */ cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ cpu->dcz_blocksize = 7; /* 512 bytes */ #endif cpu->gm_blocksize = 6; /* 256 bytes */ cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ); cpu->sme_vq.supported = SVE_VQ_POW2_MAP; aarch64_add_pauth_properties(obj); aarch64_add_sve_properties(obj); aarch64_add_sme_properties(obj); object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, cpu_max_set_sve_max_vq, NULL, NULL); object_property_add_bool(obj, "x-rme", cpu_arm_get_rme, cpu_arm_set_rme); object_property_add(obj, "x-l0gptsz", "uint32", cpu_max_get_l0gptsz, cpu_max_set_l0gptsz, NULL, NULL); qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property); } static const ARMCPUInfo aarch64_cpus[] = { { .name = "cortex-a35", .initfn = aarch64_a35_initfn }, { .name = "cortex-a55", .initfn = aarch64_a55_initfn }, { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, { .name = "cortex-a76", .initfn = aarch64_a76_initfn }, { .name = "cortex-a710", .initfn = aarch64_a710_initfn }, { .name = "a64fx", .initfn = aarch64_a64fx_initfn }, { .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn }, { .name = "neoverse-v1", .initfn = aarch64_neoverse_v1_initfn }, }; static void aarch64_cpu_register_types(void) { size_t i; for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { aarch64_cpu_register(&aarch64_cpus[i]); } } type_init(aarch64_cpu_register_types)