/* * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation. * * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski * * This code is licensed under the GPLv2. */ #include "vl.h" #include "sd.h" struct pxa2xx_mmci_s { target_phys_addr_t base; qemu_irq irq; void *dma; SDState *card; uint32_t status; uint32_t clkrt; uint32_t spi; uint32_t cmdat; uint32_t resp_tout; uint32_t read_tout; int blklen; int numblk; uint32_t intmask; uint32_t intreq; int cmd; uint32_t arg; int active; int bytesleft; uint8_t tx_fifo[64]; int tx_start; int tx_len; uint8_t rx_fifo[32]; int rx_start; int rx_len; uint16_t resp_fifo[9]; int resp_len; int cmdreq; int ac_width; }; #define MMC_STRPCL 0x00 /* MMC Clock Start/Stop register */ #define MMC_STAT 0x04 /* MMC Status register */ #define MMC_CLKRT 0x08 /* MMC Clock Rate register */ #define MMC_SPI 0x0c /* MMC SPI Mode register */ #define MMC_CMDAT 0x10 /* MMC Command/Data register */ #define MMC_RESTO 0x14 /* MMC Response Time-Out register */ #define MMC_RDTO 0x18 /* MMC Read Time-Out register */ #define MMC_BLKLEN 0x1c /* MMC Block Length register */ #define MMC_NUMBLK 0x20 /* MMC Number of Blocks register */ #define MMC_PRTBUF 0x24 /* MMC Buffer Partly Full register */ #define MMC_I_MASK 0x28 /* MMC Interrupt Mask register */ #define MMC_I_REG 0x2c /* MMC Interrupt Request register */ #define MMC_CMD 0x30 /* MMC Command register */ #define MMC_ARGH 0x34 /* MMC Argument High register */ #define MMC_ARGL 0x38 /* MMC Argument Low register */ #define MMC_RES 0x3c /* MMC Response FIFO */ #define MMC_RXFIFO 0x40 /* MMC Receive FIFO */ #define MMC_TXFIFO 0x44 /* MMC Transmit FIFO */ #define MMC_RDWAIT 0x48 /* MMC RD_WAIT register */ #define MMC_BLKS_REM 0x4c /* MMC Blocks Remaining register */ /* Bitfield masks */ #define STRPCL_STOP_CLK (1 << 0) #define STRPCL_STRT_CLK (1 << 1) #define STAT_TOUT_RES (1 << 1) #define STAT_CLK_EN (1 << 8) #define STAT_DATA_DONE (1 << 11) #define STAT_PRG_DONE (1 << 12) #define STAT_END_CMDRES (1 << 13) #define SPI_SPI_MODE (1 << 0) #define CMDAT_RES_TYPE (3 << 0) #define CMDAT_DATA_EN (1 << 2) #define CMDAT_WR_RD (1 << 3) #define CMDAT_DMA_EN (1 << 7) #define CMDAT_STOP_TRAN (1 << 10) #define INT_DATA_DONE (1 << 0) #define INT_PRG_DONE (1 << 1) #define INT_END_CMD (1 << 2) #define INT_STOP_CMD (1 << 3) #define INT_CLK_OFF (1 << 4) #define INT_RXFIFO_REQ (1 << 5) #define INT_TXFIFO_REQ (1 << 6) #define INT_TINT (1 << 7) #define INT_DAT_ERR (1 << 8) #define INT_RES_ERR (1 << 9) #define INT_RD_STALLED (1 << 10) #define INT_SDIO_INT (1 << 11) #define INT_SDIO_SACK (1 << 12) #define PRTBUF_PRT_BUF (1 << 0) /* Route internal interrupt lines to the global IC and DMA */ static void pxa2xx_mmci_int_update(struct pxa2xx_mmci_s *s) { uint32_t mask = s->intmask; if (s->cmdat & CMDAT_DMA_EN) { mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ; pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma, PXA2XX_RX_RQ_MMCI, !!(s->intreq & INT_RXFIFO_REQ)); pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma, PXA2XX_TX_RQ_MMCI, !!(s->intreq & INT_TXFIFO_REQ)); } qemu_set_irq(s->irq, !!(s->intreq & ~mask)); } static void pxa2xx_mmci_fifo_update(struct pxa2xx_mmci_s *s) { if (!s->active) return; if (s->cmdat & CMDAT_WR_RD) { while (s->bytesleft && s->tx_len) { sd_write_data(s->card, s->tx_fifo[s->tx_start ++]); s->tx_start &= 0x1f; s->tx_len --; s->bytesleft --; } if (s->bytesleft) s->intreq |= INT_TXFIFO_REQ; } else while (s->bytesleft && s->rx_len < 32) { s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] = sd_read_data(s->card); s->bytesleft --; s->intreq |= INT_RXFIFO_REQ; } if (!s->bytesleft) { s->active = 0; s->intreq |= INT_DATA_DONE; s->status |= STAT_DATA_DONE; if (s->cmdat & CMDAT_WR_RD) { s->intreq |= INT_PRG_DONE; s->status |= STAT_PRG_DONE; } } pxa2xx_mmci_int_update(s); } static void pxa2xx_mmci_wakequeues(struct pxa2xx_mmci_s *s) { int rsplen, i; struct sd_request_s request; uint8_t response[16]; s->active = 1; s->rx_len = 0; s->tx_len = 0; s->cmdreq = 0; request.cmd = s->cmd; request.arg = s->arg; request.crc = 0; /* FIXME */ rsplen = sd_do_command(s->card, &request, response); s->intreq |= INT_END_CMD; memset(s->resp_fifo, 0, sizeof(s->resp_fifo)); switch (s->cmdat & CMDAT_RES_TYPE) { #define PXAMMCI_RESP(wd, value0, value1) \ s->resp_fifo[(wd) + 0] |= (value0); \ s->resp_fifo[(wd) + 1] |= (value1) << 8; case 0: /* No response */ goto complete; case 1: /* R1, R4, R5 or R6 */ if (rsplen < 4) goto timeout; goto complete; case 2: /* R2 */ if (rsplen < 16) goto timeout; goto complete; case 3: /* R3 */ if (rsplen < 4) goto timeout; goto complete; complete: for (i = 0; rsplen > 0; i ++, rsplen -= 2) { PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]); } s->status |= STAT_END_CMDRES; if (!(s->cmdat & CMDAT_DATA_EN)) s->active = 0; else s->bytesleft = s->numblk * s->blklen; s->resp_len = 0; break; timeout: s->active = 0; s->status |= STAT_TOUT_RES; break; } pxa2xx_mmci_fifo_update(s); } static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; uint32_t ret; offset -= s->base; switch (offset) { case MMC_STRPCL: return 0; case MMC_STAT: return s->status; case MMC_CLKRT: return s->clkrt; case MMC_SPI: return s->spi; case MMC_CMDAT: return s->cmdat; case MMC_RESTO: return s->resp_tout; case MMC_RDTO: return s->read_tout; case MMC_BLKLEN: return s->blklen; case MMC_NUMBLK: return s->numblk; case MMC_PRTBUF: return 0; case MMC_I_MASK: return s->intmask; case MMC_I_REG: return s->intreq; case MMC_CMD: return s->cmd | 0x40; case MMC_ARGH: return s->arg >> 16; case MMC_ARGL: return s->arg & 0xffff; case MMC_RES: if (s->resp_len < 9) return s->resp_fifo[s->resp_len ++]; return 0; case MMC_RXFIFO: ret = 0; while (s->ac_width -- && s->rx_len) { ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3); s->rx_start &= 0x1f; s->rx_len --; } s->intreq &= ~INT_RXFIFO_REQ; pxa2xx_mmci_fifo_update(s); return ret; case MMC_RDWAIT: return 0; case MMC_BLKS_REM: return s->numblk; default: cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset); } return 0; } static void pxa2xx_mmci_write(void *opaque, target_phys_addr_t offset, uint32_t value) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; offset -= s->base; switch (offset) { case MMC_STRPCL: if (value & STRPCL_STRT_CLK) { s->status |= STAT_CLK_EN; s->intreq &= ~INT_CLK_OFF; if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) { s->status &= STAT_CLK_EN; pxa2xx_mmci_wakequeues(s); } } if (value & STRPCL_STOP_CLK) { s->status &= ~STAT_CLK_EN; s->intreq |= INT_CLK_OFF; s->active = 0; } pxa2xx_mmci_int_update(s); break; case MMC_CLKRT: s->clkrt = value & 7; break; case MMC_SPI: s->spi = value & 0xf; if (value & SPI_SPI_MODE) printf("%s: attempted to use card in SPI mode\n", __FUNCTION__); break; case MMC_CMDAT: s->cmdat = value & 0x3dff; s->active = 0; s->cmdreq = 1; if (!(value & CMDAT_STOP_TRAN)) { s->status &= STAT_CLK_EN; if (s->status & STAT_CLK_EN) pxa2xx_mmci_wakequeues(s); } pxa2xx_mmci_int_update(s); break; case MMC_RESTO: s->resp_tout = value & 0x7f; break; case MMC_RDTO: s->read_tout = value & 0xffff; break; case MMC_BLKLEN: s->blklen = value & 0xfff; break; case MMC_NUMBLK: s->numblk = value & 0xffff; break; case MMC_PRTBUF: if (value & PRTBUF_PRT_BUF) { s->tx_start ^= 32; s->tx_len = 0; } pxa2xx_mmci_fifo_update(s); break; case MMC_I_MASK: s->intmask = value & 0x1fff; pxa2xx_mmci_int_update(s); break; case MMC_CMD: s->cmd = value & 0x3f; break; case MMC_ARGH: s->arg &= 0x0000ffff; s->arg |= value << 16; break; case MMC_ARGL: s->arg &= 0xffff0000; s->arg |= value & 0x0000ffff; break; case MMC_TXFIFO: while (s->ac_width -- && s->tx_len < 0x20) s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] = (value >> (s->ac_width << 3)) & 0xff; s->intreq &= ~INT_TXFIFO_REQ; pxa2xx_mmci_fifo_update(s); break; case MMC_RDWAIT: case MMC_BLKS_REM: break; default: cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset); } } static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; s->ac_width = 1; return pxa2xx_mmci_read(opaque, offset); } static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; s->ac_width = 2; return pxa2xx_mmci_read(opaque, offset); } static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; s->ac_width = 4; return pxa2xx_mmci_read(opaque, offset); } static CPUReadMemoryFunc *pxa2xx_mmci_readfn[] = { pxa2xx_mmci_readb, pxa2xx_mmci_readh, pxa2xx_mmci_readw }; static void pxa2xx_mmci_writeb(void *opaque, target_phys_addr_t offset, uint32_t value) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; s->ac_width = 1; pxa2xx_mmci_write(opaque, offset, value); } static void pxa2xx_mmci_writeh(void *opaque, target_phys_addr_t offset, uint32_t value) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; s->ac_width = 2; pxa2xx_mmci_write(opaque, offset, value); } static void pxa2xx_mmci_writew(void *opaque, target_phys_addr_t offset, uint32_t value) { struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque; s->ac_width = 4; pxa2xx_mmci_write(opaque, offset, value); } static CPUWriteMemoryFunc *pxa2xx_mmci_writefn[] = { pxa2xx_mmci_writeb, pxa2xx_mmci_writeh, pxa2xx_mmci_writew }; struct pxa2xx_mmci_s *pxa2xx_mmci_init(target_phys_addr_t base, qemu_irq irq, void *dma) { int iomemtype; struct pxa2xx_mmci_s *s; s = (struct pxa2xx_mmci_s *) qemu_mallocz(sizeof(struct pxa2xx_mmci_s)); s->base = base; s->irq = irq; s->dma = dma; iomemtype = cpu_register_io_memory(0, pxa2xx_mmci_readfn, pxa2xx_mmci_writefn, s); cpu_register_physical_memory(base, 0x000fffff, iomemtype); /* Instantiate the actual storage */ s->card = sd_init(sd_bdrv); return s; } void pxa2xx_mmci_handlers(struct pxa2xx_mmci_s *s, void *opaque, void (*readonly_cb)(void *, int), void (*coverswitch_cb)(void *, int)) { sd_set_cb(s->card, opaque, readonly_cb, coverswitch_cb); }