/* * Copyright(c) 2022 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* * Test instructions that might set bits in user status register (USR) */ #include #include int err; static void __check(int line, uint32_t val, uint32_t expect) { if (val != expect) { printf("ERROR at line %d: %d != %d\n", line, val, expect); err++; } } #define check(RES, EXP) __check(__LINE__, RES, EXP) static void __check32(int line, uint32_t val, uint32_t expect) { if (val != expect) { printf("ERROR at line %d: 0x%08x != 0x%08x\n", line, val, expect); err++; } } #define check32(RES, EXP) __check32(__LINE__, RES, EXP) static void __check64(int line, uint64_t val, uint64_t expect) { if (val != expect) { printf("ERROR at line %d: 0x%016llx != 0x%016llx\n", line, val, expect); err++; } } #define check64(RES, EXP) __check64(__LINE__, RES, EXP) /* * Some of the instructions tested are only available on certain versions * of the Hexagon core */ #define CORE_HAS_AUDIO (__HEXAGON_ARCH__ >= 67 && defined(__HEXAGON_AUDIO__)) #define CORE_IS_V67 (__HEXAGON_ARCH__ >= 67) /* Define the bits in Hexagon USR register */ #define USR_OVF_BIT 0 /* Sticky saturation overflow */ #define USR_FPINVF_BIT 1 /* IEEE FP invalid sticky flag */ #define USR_FPDBZF_BIT 2 /* IEEE FP divide-by-zero sticky flag */ #define USR_FPOVFF_BIT 3 /* IEEE FP overflow sticky flag */ #define USR_FPUNFF_BIT 4 /* IEEE FP underflow sticky flag */ #define USR_FPINPF_BIT 5 /* IEEE FP inexact sticky flag */ /* Corresponding values in USR */ #define USR_CLEAR 0 #define USR_OVF (1 << USR_OVF_BIT) #define USR_FPINVF (1 << USR_FPINVF_BIT) #define USR_FPDBZF (1 << USR_FPDBZF_BIT) #define USR_FPOVFF (1 << USR_FPOVFF_BIT) #define USR_FPUNFF (1 << USR_FPUNFF_BIT) #define USR_FPINPF (1 << USR_FPINPF_BIT) /* Some useful floating point values */ const uint32_t SF_INF = 0x7f800000; const uint32_t SF_QNaN = 0x7fc00000; const uint32_t SF_SNaN = 0x7fb00000; const uint32_t SF_QNaN_neg = 0xffc00000; const uint32_t SF_SNaN_neg = 0xffb00000; const uint32_t SF_HEX_NaN = 0xffffffff; const uint32_t SF_zero = 0x00000000; const uint32_t SF_one = 0x3f800000; const uint32_t SF_one_recip = 0x3f7f0001; /* 0.9960... */ const uint32_t SF_one_invsqrta = 0x3f7f0000; /* 0.99609375 */ const uint32_t SF_two = 0x40000000; const uint32_t SF_four = 0x40800000; const uint32_t SF_small_neg = 0xab98fba8; const uint32_t SF_large_pos = 0x5afa572e; const uint64_t DF_QNaN = 0x7ff8000000000000ULL; const uint64_t DF_SNaN = 0x7ff7000000000000ULL; const uint64_t DF_QNaN_neg = 0xfff8000000000000ULL; const uint64_t DF_SNaN_neg = 0xfff7000000000000ULL; const uint64_t DF_HEX_NaN = 0xffffffffffffffffULL; const uint64_t DF_zero = 0x0000000000000000ULL; const uint64_t DF_any = 0x3f80000000000000ULL; const uint64_t DF_one = 0x3ff0000000000000ULL; const uint64_t DF_one_hh = 0x3ff001ff80000000ULL; /* 1.00048... */ const uint64_t DF_small_neg = 0xbd731f7500000000ULL; const uint64_t DF_large_pos = 0x7f80000000000001ULL; /* * Templates for functions to execute an instruction * * The templates vary by the number of arguments and the types of the args * and result. We use one letter in the macro name for the result and each * argument: * x unknown (specified in a subsequent template) or don't care * R register (32 bits) * P pair (64 bits) * p predicate * I immediate * Xx read/write */ /* Clear bits 0-5 in USR */ #define CLEAR_USRBITS \ "r2 = usr\n\t" \ "r2 = and(r2, #0xffffffc0)\n\t" \ "usr = r2\n\t" /* Template for instructions with one register operand */ #define FUNC_x_OP_x(RESTYPE, SRCTYPE, NAME, INSN) \ static RESTYPE NAME(SRCTYPE src, uint32_t *usr_result) \ { \ RESTYPE result; \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = usr\n\t" \ : "=r"(result), "=r"(usr) \ : "r"(src) \ : "r2", "usr"); \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_R_OP_R(NAME, INSN) \ FUNC_x_OP_x(uint32_t, uint32_t, NAME, INSN) #define FUNC_R_OP_P(NAME, INSN) \ FUNC_x_OP_x(uint32_t, uint64_t, NAME, INSN) #define FUNC_P_OP_P(NAME, INSN) \ FUNC_x_OP_x(uint64_t, uint64_t, NAME, INSN) #define FUNC_P_OP_R(NAME, INSN) \ FUNC_x_OP_x(uint64_t, uint32_t, NAME, INSN) /* * Template for instructions with a register and predicate result * and one register operand */ #define FUNC_xp_OP_x(RESTYPE, SRCTYPE, NAME, INSN) \ static RESTYPE NAME(SRCTYPE src, uint8_t *pred_result, uint32_t *usr_result) \ { \ RESTYPE result; \ uint8_t pred; \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = p2\n\t" \ "%2 = usr\n\t" \ : "=r"(result), "=r"(pred), "=r"(usr) \ : "r"(src) \ : "r2", "p2", "usr"); \ *pred_result = pred; \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_Rp_OP_R(NAME, INSN) \ FUNC_xp_OP_x(uint32_t, uint32_t, NAME, INSN) /* Template for instructions with two register operands */ #define FUNC_x_OP_xx(RESTYPE, SRC1TYPE, SRC2TYPE, NAME, INSN) \ static RESTYPE NAME(SRC1TYPE src1, SRC2TYPE src2, uint32_t *usr_result) \ { \ RESTYPE result; \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = usr\n\t" \ : "=r"(result), "=r"(usr) \ : "r"(src1), "r"(src2) \ : "r2", "usr"); \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_P_OP_PP(NAME, INSN) \ FUNC_x_OP_xx(uint64_t, uint64_t, uint64_t, NAME, INSN) #define FUNC_R_OP_PP(NAME, INSN) \ FUNC_x_OP_xx(uint32_t, uint64_t, uint64_t, NAME, INSN) #define FUNC_P_OP_RR(NAME, INSN) \ FUNC_x_OP_xx(uint64_t, uint32_t, uint32_t, NAME, INSN) #define FUNC_R_OP_RR(NAME, INSN) \ FUNC_x_OP_xx(uint32_t, uint32_t, uint32_t, NAME, INSN) #define FUNC_R_OP_PR(NAME, INSN) \ FUNC_x_OP_xx(uint32_t, uint64_t, uint32_t, NAME, INSN) #define FUNC_P_OP_PR(NAME, INSN) \ FUNC_x_OP_xx(uint64_t, uint64_t, uint32_t, NAME, INSN) /* * Template for instructions with a register and predicate result * and two register operands */ #define FUNC_xp_OP_xx(RESTYPE, SRC1TYPE, SRC2TYPE, NAME, INSN) \ static RESTYPE NAME(SRC1TYPE src1, SRC2TYPE src2, \ uint8_t *pred_result, uint32_t *usr_result) \ { \ RESTYPE result; \ uint8_t pred; \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = p2\n\t" \ "%2 = usr\n\t" \ : "=r"(result), "=r"(pred), "=r"(usr) \ : "r"(src1), "r"(src2) \ : "r2", "p2", "usr"); \ *pred_result = pred; \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_Rp_OP_RR(NAME, INSN) \ FUNC_xp_OP_xx(uint32_t, uint32_t, uint32_t, NAME, INSN) /* Template for instructions with one register and one immediate */ #define FUNC_x_OP_xI(RESTYPE, SRC1TYPE, NAME, INSN) \ static RESTYPE NAME(SRC1TYPE src1, int32_t src2, uint32_t *usr_result) \ { \ RESTYPE result; \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = usr\n\t" \ : "=r"(result), "=r"(usr) \ : "r"(src1), "i"(src2) \ : "r2", "usr"); \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_R_OP_RI(NAME, INSN) \ FUNC_x_OP_xI(uint32_t, uint32_t, NAME, INSN) #define FUNC_R_OP_PI(NAME, INSN) \ FUNC_x_OP_xI(uint32_t, uint64_t, NAME, INSN) /* * Template for instructions with a read/write result * and two register operands */ #define FUNC_Xx_OP_xx(RESTYPE, SRC1TYPE, SRC2TYPE, NAME, INSN) \ static RESTYPE NAME(RESTYPE result, SRC1TYPE src1, SRC2TYPE src2, \ uint32_t *usr_result) \ { \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = usr\n\t" \ : "+r"(result), "=r"(usr) \ : "r"(src1), "r"(src2) \ : "r2", "usr"); \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_XR_OP_RR(NAME, INSN) \ FUNC_Xx_OP_xx(uint32_t, uint32_t, uint32_t, NAME, INSN) #define FUNC_XP_OP_PP(NAME, INSN) \ FUNC_Xx_OP_xx(uint64_t, uint64_t, uint64_t, NAME, INSN) #define FUNC_XP_OP_RR(NAME, INSN) \ FUNC_Xx_OP_xx(uint64_t, uint32_t, uint32_t, NAME, INSN) /* * Template for instructions with a read/write result * and two register operands */ #define FUNC_Xxp_OP_xx(RESTYPE, SRC1TYPE, SRC2TYPE, NAME, INSN) \ static RESTYPE NAME(RESTYPE result, SRC1TYPE src1, SRC2TYPE src2, \ uint8_t *pred_result, uint32_t *usr_result) \ { \ uint32_t usr; \ uint8_t pred; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%1 = p2\n\t" \ "%2 = usr\n\t" \ : "+r"(result), "=r"(pred), "=r"(usr) \ : "r"(src1), "r"(src2) \ : "r2", "usr"); \ *pred_result = pred; \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_XPp_OP_PP(NAME, INSN) \ FUNC_Xxp_OP_xx(uint64_t, uint64_t, uint64_t, NAME, INSN) /* * Template for instructions with a read/write result and * two register and one predicate operands */ #define FUNC_Xx_OP_xxp(RESTYPE, SRC1TYPE, SRC2TYPE, NAME, INSN) \ static RESTYPE NAME(RESTYPE result, SRC1TYPE src1, SRC2TYPE src2, uint8_t pred,\ uint32_t *usr_result) \ { \ uint32_t usr; \ asm(CLEAR_USRBITS \ "p2 = %4\n\t" \ INSN "\n\t" \ "%1 = usr\n\t" \ : "+r"(result), "=r"(usr) \ : "r"(src1), "r"(src2), "r"(pred) \ : "r2", "p2", "usr"); \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_XR_OP_RRp(NAME, INSN) \ FUNC_Xx_OP_xxp(uint32_t, uint32_t, uint32_t, NAME, INSN) /* Template for compare instructions with two register operands */ #define FUNC_CMP_xx(SRC1TYPE, SRC2TYPE, NAME, INSN) \ static uint32_t NAME(SRC1TYPE src1, SRC2TYPE src2, uint32_t *usr_result) \ { \ uint32_t result; \ uint32_t usr; \ asm(CLEAR_USRBITS \ INSN "\n\t" \ "%0 = p1\n\t" \ "%1 = usr\n\t" \ : "=r"(result), "=r"(usr) \ : "r"(src1), "r"(src2) \ : "p1", "r2", "usr"); \ *usr_result = usr & 0x3f; \ return result; \ } #define FUNC_CMP_RR(NAME, INSN) \ FUNC_CMP_xx(uint32_t, uint32_t, NAME, INSN) #define FUNC_CMP_PP(NAME, INSN) \ FUNC_CMP_xx(uint64_t, uint64_t, NAME, INSN) /* * Function declarations using the templates */ FUNC_R_OP_R(satub, "%0 = satub(%2)") FUNC_P_OP_PP(vaddubs, "%0 = vaddub(%2, %3):sat") FUNC_P_OP_PP(vadduhs, "%0 = vadduh(%2, %3):sat") FUNC_P_OP_PP(vsububs, "%0 = vsubub(%2, %3):sat") FUNC_P_OP_PP(vsubuhs, "%0 = vsubuh(%2, %3):sat") /* Add vector of half integers with saturation and pack to unsigned bytes */ FUNC_R_OP_PP(vaddhubs, "%0 = vaddhub(%2, %3):sat") /* Vector saturate half to unsigned byte */ FUNC_R_OP_P(vsathub, "%0 = vsathub(%2)") /* Similar to above but takes a 32-bit argument */ FUNC_R_OP_R(svsathub, "%0 = vsathub(%2)") /* Vector saturate word to unsigned half */ FUNC_P_OP_P(vsatwuh_nopack, "%0 = vsatwuh(%2)") /* Similar to above but returns a 32-bit result */ FUNC_R_OP_P(vsatwuh, "%0 = vsatwuh(%2)") /* Vector arithmetic shift halfwords with saturate and pack */ FUNC_R_OP_PI(asrhub_sat, "%0 = vasrhub(%2, #%3):sat") /* Vector arithmetic shift halfwords with round, saturate and pack */ FUNC_R_OP_PI(asrhub_rnd_sat, "%0 = vasrhub(%2, #%3):raw") FUNC_R_OP_RR(addsat, "%0 = add(%2, %3):sat") /* Similar to above but with register pairs */ FUNC_P_OP_PP(addpsat, "%0 = add(%2, %3):sat") FUNC_XR_OP_RR(mpy_acc_sat_hh_s0, "%0 += mpy(%2.H, %3.H):sat") FUNC_R_OP_RR(mpy_sat_hh_s1, "%0 = mpy(%2.H, %3.H):<<1:sat") FUNC_R_OP_RR(mpy_sat_rnd_hh_s1, "%0 = mpy(%2.H, %3.H):<<1:rnd:sat") FUNC_R_OP_RR(mpy_up_s1_sat, "%0 = mpy(%2, %3):<<1:sat") FUNC_P_OP_RR(vmpy2s_s1, "%0 = vmpyh(%2, %3):<<1:sat") FUNC_P_OP_RR(vmpy2su_s1, "%0 = vmpyhsu(%2, %3):<<1:sat") FUNC_R_OP_RR(vmpy2s_s1pack, "%0 = vmpyh(%2, %3):<<1:rnd:sat") FUNC_P_OP_PP(vmpy2es_s1, "%0 = vmpyeh(%2, %3):<<1:sat") FUNC_R_OP_PP(vdmpyrs_s1, "%0 = vdmpy(%2, %3):<<1:rnd:sat") FUNC_XP_OP_PP(vdmacs_s0, "%0 += vdmpy(%2, %3):sat") FUNC_R_OP_RR(cmpyrs_s0, "%0 = cmpy(%2, %3):rnd:sat") FUNC_XP_OP_RR(cmacs_s0, "%0 += cmpy(%2, %3):sat") FUNC_XP_OP_RR(cnacs_s0, "%0 -= cmpy(%2, %3):sat") FUNC_P_OP_PP(vrcmpys_s1_h, "%0 = vrcmpys(%2, %3):<<1:sat:raw:hi") FUNC_XP_OP_PP(mmacls_s0, "%0 += vmpyweh(%2, %3):sat") FUNC_R_OP_RR(hmmpyl_rs1, "%0 = mpy(%2, %3.L):<<1:rnd:sat") FUNC_XP_OP_PP(mmaculs_s0, "%0 += vmpyweuh(%2, %3):sat") FUNC_R_OP_PR(cmpyi_wh, "%0 = cmpyiwh(%2, %3):<<1:rnd:sat") FUNC_P_OP_PP(vcmpy_s0_sat_i, "%0 = vcmpyi(%2, %3):sat") FUNC_P_OP_PR(vcrotate, "%0 = vcrotate(%2, %3)") FUNC_P_OP_PR(vcnegh, "%0 = vcnegh(%2, %3)") #if CORE_HAS_AUDIO FUNC_R_OP_PP(wcmpyrw, "%0 = cmpyrw(%2, %3):<<1:sat") #endif FUNC_R_OP_RR(addh_l16_sat_ll, "%0 = add(%2.L, %3.L):sat") FUNC_P_OP_P(vconj, "%0 = vconj(%2):sat") FUNC_P_OP_PP(vxaddsubw, "%0 = vxaddsubw(%2, %3):sat") FUNC_P_OP_P(vabshsat, "%0 = vabsh(%2):sat") FUNC_P_OP_PP(vnavgwr, "%0 = vnavgw(%2, %3):rnd:sat") FUNC_R_OP_RI(round_ri_sat, "%0 = round(%2, #%3):sat") FUNC_R_OP_RR(asr_r_r_sat, "%0 = asr(%2, %3):sat") FUNC_XPp_OP_PP(ACS, "%0, p2 = vacsh(%3, %4)") /* Floating point */ FUNC_R_OP_RR(sfmin, "%0 = sfmin(%2, %3)") FUNC_R_OP_RR(sfmax, "%0 = sfmax(%2, %3)") FUNC_R_OP_RR(sfadd, "%0 = sfadd(%2, %3)") FUNC_R_OP_RR(sfsub, "%0 = sfsub(%2, %3)") FUNC_R_OP_RR(sfmpy, "%0 = sfmpy(%2, %3)") FUNC_XR_OP_RR(sffma, "%0 += sfmpy(%2, %3)") FUNC_XR_OP_RR(sffms, "%0 -= sfmpy(%2, %3)") FUNC_CMP_RR(sfcmpuo, "p1 = sfcmp.uo(%2, %3)") FUNC_CMP_RR(sfcmpeq, "p1 = sfcmp.eq(%2, %3)") FUNC_CMP_RR(sfcmpgt, "p1 = sfcmp.gt(%2, %3)") FUNC_CMP_RR(sfcmpge, "p1 = sfcmp.ge(%2, %3)") FUNC_P_OP_PP(dfadd, "%0 = dfadd(%2, %3)") FUNC_P_OP_PP(dfsub, "%0 = dfsub(%2, %3)") #if CORE_IS_V67 FUNC_P_OP_PP(dfmin, "%0 = dfmin(%2, %3)") FUNC_P_OP_PP(dfmax, "%0 = dfmax(%2, %3)") FUNC_XP_OP_PP(dfmpyhh, "%0 += dfmpyhh(%2, %3)") #endif FUNC_CMP_PP(dfcmpuo, "p1 = dfcmp.uo(%2, %3)") FUNC_CMP_PP(dfcmpeq, "p1 = dfcmp.eq(%2, %3)") FUNC_CMP_PP(dfcmpgt, "p1 = dfcmp.gt(%2, %3)") FUNC_CMP_PP(dfcmpge, "p1 = dfcmp.ge(%2, %3)") /* Conversions from sf */ FUNC_P_OP_R(conv_sf2df, "%0 = convert_sf2df(%2)") FUNC_R_OP_R(conv_sf2uw, "%0 = convert_sf2uw(%2)") FUNC_R_OP_R(conv_sf2w, "%0 = convert_sf2w(%2)") FUNC_P_OP_R(conv_sf2ud, "%0 = convert_sf2ud(%2)") FUNC_P_OP_R(conv_sf2d, "%0 = convert_sf2d(%2)") FUNC_R_OP_R(conv_sf2uw_chop, "%0 = convert_sf2uw(%2):chop") FUNC_R_OP_R(conv_sf2w_chop, "%0 = convert_sf2w(%2):chop") FUNC_P_OP_R(conv_sf2ud_chop, "%0 = convert_sf2ud(%2):chop") FUNC_P_OP_R(conv_sf2d_chop, "%0 = convert_sf2d(%2):chop") /* Conversions from df */ FUNC_R_OP_P(conv_df2sf, "%0 = convert_df2sf(%2)") FUNC_R_OP_P(conv_df2uw, "%0 = convert_df2uw(%2)") FUNC_R_OP_P(conv_df2w, "%0 = convert_df2w(%2)") FUNC_P_OP_P(conv_df2ud, "%0 = convert_df2ud(%2)") FUNC_P_OP_P(conv_df2d, "%0 = convert_df2d(%2)") FUNC_R_OP_P(conv_df2uw_chop, "%0 = convert_df2uw(%2):chop") FUNC_R_OP_P(conv_df2w_chop, "%0 = convert_df2w(%2):chop") FUNC_P_OP_P(conv_df2ud_chop, "%0 = convert_df2ud(%2):chop") FUNC_P_OP_P(conv_df2d_chop, "%0 = convert_df2d(%2):chop") /* Integer to float conversions */ FUNC_R_OP_R(conv_uw2sf, "%0 = convert_uw2sf(%2)") FUNC_R_OP_R(conv_w2sf, "%0 = convert_w2sf(%2)") FUNC_R_OP_P(conv_ud2sf, "%0 = convert_ud2sf(%2)") FUNC_R_OP_P(conv_d2sf, "%0 = convert_d2sf(%2)") /* Special purpose floating point instructions */ FUNC_XR_OP_RRp(sffma_sc, "%0 += sfmpy(%2, %3, p2):scale") FUNC_Rp_OP_RR(sfrecipa, "%0, p2 = sfrecipa(%3, %4)") FUNC_R_OP_RR(sffixupn, "%0 = sffixupn(%2, %3)") FUNC_R_OP_RR(sffixupd, "%0 = sffixupd(%2, %3)") FUNC_R_OP_R(sffixupr, "%0 = sffixupr(%2)") FUNC_Rp_OP_R(sfinvsqrta, "%0, p2 = sfinvsqrta(%3)") /* * Templates for test cases * * Same naming convention as the function templates */ #define TEST_x_OP_x(RESTYPE, CHECKFN, SRCTYPE, FUNC, SRC, RES, USR_RES) \ do { \ RESTYPE result; \ SRCTYPE src = SRC; \ uint32_t usr_result; \ result = FUNC(src, &usr_result); \ CHECKFN(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_R_OP_R(FUNC, SRC, RES, USR_RES) \ TEST_x_OP_x(uint32_t, check32, uint32_t, FUNC, SRC, RES, USR_RES) #define TEST_R_OP_P(FUNC, SRC, RES, USR_RES) \ TEST_x_OP_x(uint32_t, check32, uint64_t, FUNC, SRC, RES, USR_RES) #define TEST_P_OP_P(FUNC, SRC, RES, USR_RES) \ TEST_x_OP_x(uint64_t, check64, uint64_t, FUNC, SRC, RES, USR_RES) #define TEST_P_OP_R(FUNC, SRC, RES, USR_RES) \ TEST_x_OP_x(uint64_t, check64, uint32_t, FUNC, SRC, RES, USR_RES) #define TEST_xp_OP_x(RESTYPE, CHECKFN, SRCTYPE, FUNC, SRC, \ RES, PRED_RES, USR_RES) \ do { \ RESTYPE result; \ SRCTYPE src = SRC; \ uint8_t pred_result; \ uint32_t usr_result; \ result = FUNC(src, &pred_result, &usr_result); \ CHECKFN(result, RES); \ check(pred_result, PRED_RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_Rp_OP_R(FUNC, SRC, RES, PRED_RES, USR_RES) \ TEST_xp_OP_x(uint32_t, check32, uint32_t, FUNC, SRC, RES, PRED_RES, USR_RES) #define TEST_x_OP_xx(RESTYPE, CHECKFN, SRC1TYPE, SRC2TYPE, \ FUNC, SRC1, SRC2, RES, USR_RES) \ do { \ RESTYPE result; \ SRC1TYPE src1 = SRC1; \ SRC2TYPE src2 = SRC2; \ uint32_t usr_result; \ result = FUNC(src1, src2, &usr_result); \ CHECKFN(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_P_OP_PP(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xx(uint64_t, check64, uint64_t, uint64_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_R_OP_PP(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xx(uint32_t, check32, uint64_t, uint64_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_P_OP_RR(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xx(uint64_t, check64, uint32_t, uint32_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_R_OP_RR(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xx(uint32_t, check32, uint32_t, uint32_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_R_OP_PR(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xx(uint32_t, check32, uint64_t, uint32_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_P_OP_PR(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xx(uint64_t, check64, uint64_t, uint32_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_xp_OP_xx(RESTYPE, CHECKFN, SRC1TYPE, SRC2TYPE, FUNC, SRC1, SRC2, \ RES, PRED_RES, USR_RES) \ do { \ RESTYPE result; \ SRC1TYPE src1 = SRC1; \ SRC2TYPE src2 = SRC2; \ uint8_t pred_result; \ uint32_t usr_result; \ result = FUNC(src1, src2, &pred_result, &usr_result); \ CHECKFN(result, RES); \ check(pred_result, PRED_RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_Rp_OP_RR(FUNC, SRC1, SRC2, RES, PRED_RES, USR_RES) \ TEST_xp_OP_xx(uint32_t, check32, uint32_t, uint32_t, FUNC, SRC1, SRC2, \ RES, PRED_RES, USR_RES) #define TEST_x_OP_xI(RESTYPE, CHECKFN, SRC1TYPE, \ FUNC, SRC1, SRC2, RES, USR_RES) \ do { \ RESTYPE result; \ SRC1TYPE src1 = SRC1; \ uint32_t src2 = SRC2; \ uint32_t usr_result; \ result = FUNC(src1, src2, &usr_result); \ CHECKFN(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_R_OP_RI(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xI(uint32_t, check32, uint32_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_R_OP_PI(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_x_OP_xI(uint32_t, check64, uint64_t, \ FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_Xx_OP_xx(RESTYPE, CHECKFN, SRC1TYPE, SRC2TYPE, \ FUNC, RESIN, SRC1, SRC2, RES, USR_RES) \ do { \ RESTYPE result = RESIN; \ SRC1TYPE src1 = SRC1; \ SRC2TYPE src2 = SRC2; \ uint32_t usr_result; \ result = FUNC(result, src1, src2, &usr_result); \ CHECKFN(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_XR_OP_RR(FUNC, RESIN, SRC1, SRC2, RES, USR_RES) \ TEST_Xx_OP_xx(uint32_t, check32, uint32_t, uint32_t, \ FUNC, RESIN, SRC1, SRC2, RES, USR_RES) #define TEST_XP_OP_PP(FUNC, RESIN, SRC1, SRC2, RES, USR_RES) \ TEST_Xx_OP_xx(uint64_t, check64, uint64_t, uint64_t, \ FUNC, RESIN, SRC1, SRC2, RES, USR_RES) #define TEST_XP_OP_RR(FUNC, RESIN, SRC1, SRC2, RES, USR_RES) \ TEST_Xx_OP_xx(uint64_t, check64, uint32_t, uint32_t, \ FUNC, RESIN, SRC1, SRC2, RES, USR_RES) #define TEST_Xxp_OP_xx(RESTYPE, CHECKFN, SRC1TYPE, SRC2TYPE, \ FUNC, RESIN, SRC1, SRC2, RES, PRED_RES, USR_RES) \ do { \ RESTYPE result = RESIN; \ SRC1TYPE src1 = SRC1; \ SRC2TYPE src2 = SRC2; \ uint8_t pred_res; \ uint32_t usr_result; \ result = FUNC(result, src1, src2, &pred_res, &usr_result); \ CHECKFN(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_XPp_OP_PP(FUNC, RESIN, SRC1, SRC2, RES, PRED_RES, USR_RES) \ TEST_Xxp_OP_xx(uint64_t, check64, uint64_t, uint64_t, FUNC, RESIN, SRC1, SRC2, \ RES, PRED_RES, USR_RES) #define TEST_Xx_OP_xxp(RESTYPE, CHECKFN, SRC1TYPE, SRC2TYPE, \ FUNC, RESIN, SRC1, SRC2, PRED, RES, USR_RES) \ do { \ RESTYPE result = RESIN; \ SRC1TYPE src1 = SRC1; \ SRC2TYPE src2 = SRC2; \ uint8_t pred = PRED; \ uint32_t usr_result; \ result = FUNC(result, src1, src2, pred, &usr_result); \ CHECKFN(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_XR_OP_RRp(FUNC, RESIN, SRC1, SRC2, PRED, RES, USR_RES) \ TEST_Xx_OP_xxp(uint32_t, check32, uint32_t, uint32_t, \ FUNC, RESIN, SRC1, SRC2, PRED, RES, USR_RES) #define TEST_CMP_xx(SRC1TYPE, SRC2TYPE, \ FUNC, SRC1, SRC2, RES, USR_RES) \ do { \ uint32_t result; \ SRC1TYPE src1 = SRC1; \ SRC2TYPE src2 = SRC2; \ uint32_t usr_result; \ result = FUNC(src1, src2, &usr_result); \ check(result, RES); \ check(usr_result, USR_RES); \ } while (0) #define TEST_CMP_RR(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_CMP_xx(uint32_t, uint32_t, FUNC, SRC1, SRC2, RES, USR_RES) #define TEST_CMP_PP(FUNC, SRC1, SRC2, RES, USR_RES) \ TEST_CMP_xx(uint64_t, uint64_t, FUNC, SRC1, SRC2, RES, USR_RES) int main() { TEST_R_OP_R(satub, 0, 0, USR_CLEAR); TEST_R_OP_R(satub, 0xff, 0xff, USR_CLEAR); TEST_R_OP_R(satub, 0xfff, 0xff, USR_OVF); TEST_R_OP_R(satub, -1, 0, USR_OVF); TEST_P_OP_PP(vaddubs, 0xfeLL, 0x01LL, 0xffLL, USR_CLEAR); TEST_P_OP_PP(vaddubs, 0xffLL, 0xffLL, 0xffLL, USR_OVF); TEST_P_OP_PP(vadduhs, 0xfffeLL, 0x1LL, 0xffffLL, USR_CLEAR); TEST_P_OP_PP(vadduhs, 0xffffLL, 0x1LL, 0xffffLL, USR_OVF); TEST_P_OP_PP(vsububs, 0x0807060504030201LL, 0x0101010101010101LL, 0x0706050403020100LL, USR_CLEAR); TEST_P_OP_PP(vsububs, 0x0807060504030201LL, 0x0202020202020202LL, 0x0605040302010000LL, USR_OVF); TEST_P_OP_PP(vsubuhs, 0x0004000300020001LL, 0x0001000100010001LL, 0x0003000200010000LL, USR_CLEAR); TEST_P_OP_PP(vsubuhs, 0x0004000300020001LL, 0x0002000200020002LL, 0x0002000100000000LL, USR_OVF); TEST_R_OP_PP(vaddhubs, 0x0004000300020001LL, 0x0001000100010001LL, 0x05040302, USR_CLEAR); TEST_R_OP_PP(vaddhubs, 0x7fff000300020001LL, 0x0002000200020002LL, 0xff050403, USR_OVF); TEST_R_OP_P(vsathub, 0x0001000300020001LL, 0x01030201, USR_CLEAR); TEST_R_OP_P(vsathub, 0x010000700080ffffLL, 0xff708000, USR_OVF); TEST_R_OP_P(vsatwuh, 0x0000ffff00000001LL, 0xffff0001, USR_CLEAR); TEST_R_OP_P(vsatwuh, 0x800000000000ffffLL, 0x0000ffff, USR_OVF); TEST_P_OP_P(vsatwuh_nopack, 0x0000ffff00000001LL, 0x0000ffff00000001LL, USR_CLEAR); TEST_P_OP_P(vsatwuh_nopack, 0x800000000000ffffLL, 0x000000000000ffffLL, USR_OVF); TEST_R_OP_R(svsathub, 0x00020001, 0x0201, USR_CLEAR); TEST_R_OP_R(svsathub, 0x0080ffff, 0x8000, USR_OVF); TEST_R_OP_PI(asrhub_sat, 0x004f003f002f001fLL, 3, 0x09070503, USR_CLEAR); TEST_R_OP_PI(asrhub_sat, 0x004fffff8fff001fLL, 3, 0x09000003, USR_OVF); TEST_R_OP_PI(asrhub_rnd_sat, 0x004f003f002f001fLL, 2, 0x0a080604, USR_CLEAR); TEST_R_OP_PI(asrhub_rnd_sat, 0x004fffff8fff001fLL, 2, 0x0a000004, USR_OVF); TEST_R_OP_RR(addsat, 1, 2, 3, USR_CLEAR); TEST_R_OP_RR(addsat, 0x7fffffff, 0x00000010, 0x7fffffff, USR_OVF); TEST_R_OP_RR(addsat, 0x80000000, 0x80000006, 0x80000000, USR_OVF); TEST_P_OP_PP(addpsat, 1LL, 2LL, 3LL, USR_CLEAR); /* overflow to max positive */ TEST_P_OP_PP(addpsat, 0x7ffffffffffffff0LL, 0x0000000000000010LL, 0x7fffffffffffffffLL, USR_OVF); /* overflow to min negative */ TEST_P_OP_PP(addpsat, 0x8000000000000003LL, 0x8000000000000006LL, 0x8000000000000000LL, USR_OVF); TEST_XR_OP_RR(mpy_acc_sat_hh_s0, 0x7fffffff, 0xffff0000, 0x11110000, 0x7fffeeee, USR_CLEAR); TEST_XR_OP_RR(mpy_acc_sat_hh_s0, 0x7fffffff, 0x7fff0000, 0x7fff0000, 0x7fffffff, USR_OVF); TEST_R_OP_RR(mpy_sat_hh_s1, 0xffff0000, 0x11110000, 0xffffddde, USR_CLEAR); TEST_R_OP_RR(mpy_sat_hh_s1, 0x7fff0000, 0x7fff0000, 0x7ffe0002, USR_CLEAR); TEST_R_OP_RR(mpy_sat_hh_s1, 0x80000000, 0x80000000, 0x7fffffff, USR_OVF); TEST_R_OP_RR(mpy_sat_rnd_hh_s1, 0xffff0000, 0x11110000, 0x00005dde, USR_CLEAR); TEST_R_OP_RR(mpy_sat_rnd_hh_s1, 0x7fff0000, 0x7fff0000, 0x7ffe8002, USR_CLEAR); TEST_R_OP_RR(mpy_sat_rnd_hh_s1, 0x80000000, 0x80000000, 0x7fffffff, USR_OVF); TEST_R_OP_RR(mpy_up_s1_sat, 0xffff0000, 0x11110000, 0xffffddde, USR_CLEAR); TEST_R_OP_RR(mpy_up_s1_sat, 0x7fff0000, 0x7fff0000, 0x7ffe0002, USR_CLEAR); TEST_R_OP_RR(mpy_up_s1_sat, 0x80000000, 0x80000000, 0x7fffffff, USR_OVF); TEST_P_OP_RR(vmpy2s_s1, 0x7fff0000, 0x7fff0000, 0x7ffe000200000000LL, USR_CLEAR); TEST_P_OP_RR(vmpy2s_s1, 0x80000000, 0x80000000, 0x7fffffff00000000LL, USR_OVF); TEST_P_OP_RR(vmpy2su_s1, 0x7fff0000, 0x7fff0000, 0x7ffe000200000000LL, USR_CLEAR); TEST_P_OP_RR(vmpy2su_s1, 0xffffbd97, 0xffffffff, 0xfffe000280000000LL, USR_OVF); TEST_R_OP_RR(vmpy2s_s1pack, 0x7fff0000, 0x7fff0000, 0x7ffe0000, USR_CLEAR); TEST_R_OP_RR(vmpy2s_s1pack, 0x80008000, 0x80008000, 0x7fff7fff, USR_OVF); TEST_P_OP_PP(vmpy2es_s1, 0x7fff7fff7fff7fffLL, 0x1fff1fff1fff1fffLL, 0x1ffec0021ffec002LL, USR_CLEAR); TEST_P_OP_PP(vmpy2es_s1, 0x8000800080008000LL, 0x8000800080008000LL, 0x7fffffff7fffffffLL, USR_OVF); TEST_R_OP_PP(vdmpyrs_s1, 0x7fff7fff7fff7fffLL, 0x1fff1fff1fff1fffLL, 0x3ffe3ffe, USR_CLEAR); TEST_R_OP_PP(vdmpyrs_s1, 0x8000800080008000LL, 0x8000800080008000LL, 0x7fff7fffLL, USR_OVF); TEST_XP_OP_PP(vdmacs_s0, 0x0fffffffULL, 0x00ff00ff00ff00ffLL, 0x00ff00ff00ff00ffLL, 0x0001fc021001fc01LL, USR_CLEAR); TEST_XP_OP_PP(vdmacs_s0, 0x01111111ULL, 0x8000800080001000LL, 0x8000800080008000LL, 0x7fffffff39111111LL, USR_OVF); TEST_R_OP_RR(cmpyrs_s0, 0x7fff0000, 0x7fff0000, 0x0000c001, USR_CLEAR); TEST_R_OP_RR(cmpyrs_s0, 0x80008000, 0x80008000, 0x7fff0000, USR_OVF); TEST_XP_OP_RR(cmacs_s0, 0x0fffffff, 0x7fff0000, 0x7fff0000, 0x00000000d000fffeLL, USR_CLEAR); TEST_XP_OP_RR(cmacs_s0, 0x0fff1111, 0x80008000, 0x80008000, 0x7fffffff0fff1111LL, USR_OVF); TEST_XP_OP_RR(cnacs_s0, 0x000000108fffffffULL, 0x7fff0000, 0x7fff0000, 0x00000010cfff0000ULL, USR_CLEAR); TEST_XP_OP_RR(cnacs_s0, 0x000000108ff1111fULL, 0x00002001, 0x00007ffd, 0x0000001080000000ULL, USR_OVF); TEST_P_OP_PP(vrcmpys_s1_h, 0x00ff00ff00ff00ffLL, 0x00ff00ff00ff00ffLL, 0x0003f8040003f804LL, USR_CLEAR); TEST_P_OP_PP(vrcmpys_s1_h, 0x8000800080008000LL, 0x8000800080008000LL, 0x7fffffff7fffffffLL, USR_OVF); TEST_XP_OP_PP(mmacls_s0, 0x6fffffff, 0x00ff00ff00ff00ffLL, 0x00ff00ff00ff00ffLL, 0x0000fe017000fe00LL, USR_CLEAR); TEST_XP_OP_PP(mmacls_s0, 0x6f1111ff, 0x8000800080008000LL, 0x1000100080008000LL, 0xf80008007fffffffLL, USR_OVF); TEST_R_OP_RR(hmmpyl_rs1, 0x7fff0000, 0x7fff0001, 0x0000fffe, USR_CLEAR); TEST_R_OP_RR(hmmpyl_rs1, 0x80000000, 0x80008000, 0x7fffffff, USR_OVF); TEST_XP_OP_PP(mmaculs_s0, 0x000000007fffffffULL, 0xffff800080008000LL, 0xffff800080008000LL, 0xffffc00040003fffLL, USR_CLEAR); TEST_XP_OP_PP(mmaculs_s0, 0x000011107fffffffULL, 0x00ff00ff00ff00ffLL, 0x00ff00ff001100ffLL, 0x00010f117fffffffLL, USR_OVF); TEST_R_OP_PR(cmpyi_wh, 0x7fff000000000000LL, 0x7fff0001, 0x0000fffe, USR_CLEAR); TEST_R_OP_PR(cmpyi_wh, 0x8000000000000000LL, 0x80008000, 0x7fffffff, USR_OVF); TEST_P_OP_PP(vcmpy_s0_sat_i, 0x00ff00ff00ff00ffLL, 0x00ff00ff00ff00ffLL, 0x0001fc020001fc02LL, USR_CLEAR); TEST_P_OP_PP(vcmpy_s0_sat_i, 0x8000800080008000LL, 0x8000800080008000LL, 0x7fffffff7fffffffLL, USR_OVF); TEST_P_OP_PR(vcrotate, 0x8000000000000000LL, 0x00000002, 0x8000000000000000LL, USR_CLEAR); TEST_P_OP_PR(vcrotate, 0x7fff80007fff8000LL, 0x00000001, 0x7fff80007fff7fffLL, USR_OVF); TEST_P_OP_PR(vcnegh, 0x8000000000000000LL, 0x00000002, 0x8000000000000000LL, USR_CLEAR); TEST_P_OP_PR(vcnegh, 0x7fff80007fff8000LL, 0x00000001, 0x7fff80007fff7fffLL, USR_OVF); #if CORE_HAS_AUDIO TEST_R_OP_PP(wcmpyrw, 0x8765432101234567LL, 0x00000002ffffffffLL, 0x00000001, USR_CLEAR); TEST_R_OP_PP(wcmpyrw, 0x800000007fffffffLL, 0x000000ff7fffffffLL, 0x7fffffff, USR_OVF); TEST_R_OP_PP(wcmpyrw, 0x7fffffff80000000LL, 0x7fffffff000000ffLL, 0x80000000, USR_OVF); #else printf("Audio instructions skipped\n"); #endif TEST_R_OP_RR(addh_l16_sat_ll, 0x0000ffff, 0x00000002, 0x00000001, USR_CLEAR); TEST_R_OP_RR(addh_l16_sat_ll, 0x00007fff, 0x00000005, 0x00007fff, USR_OVF); TEST_R_OP_RR(addh_l16_sat_ll, 0x00008000, 0x00008000, 0xffff8000, USR_OVF); TEST_P_OP_P(vconj, 0x0000ffff00000001LL, 0x0000ffff00000001LL, USR_CLEAR); TEST_P_OP_P(vconj, 0x800000000000ffffLL, 0x7fff00000000ffffLL, USR_OVF); TEST_P_OP_PP(vxaddsubw, 0x8765432101234567LL, 0x00000002ffffffffLL, 0x8765432201234569LL, USR_CLEAR); TEST_P_OP_PP(vxaddsubw, 0x7fffffff7fffffffLL, 0xffffffffffffffffLL, 0x7fffffff7ffffffeLL, USR_OVF); TEST_P_OP_PP(vxaddsubw, 0x800000000fffffffLL, 0x0000000a00000008LL, 0x8000000010000009LL, USR_OVF); TEST_P_OP_P(vabshsat, 0x0001000afffff800LL, 0x0001000a00010800LL, USR_CLEAR); TEST_P_OP_P(vabshsat, 0x8000000b000c000aLL, 0x7fff000b000c000aLL, USR_OVF); TEST_P_OP_PP(vnavgwr, 0x8765432101234567LL, 0x00000002ffffffffLL, 0xc3b2a1900091a2b4LL, USR_CLEAR); TEST_P_OP_PP(vnavgwr, 0x7fffffff8000000aLL, 0x80000000ffffffffLL, 0x7fffffffc0000006LL, USR_OVF); TEST_R_OP_RI(round_ri_sat, 0x0000ffff, 2, 0x00004000, USR_CLEAR); TEST_R_OP_RI(round_ri_sat, 0x7fffffff, 2, 0x1fffffff, USR_OVF); TEST_R_OP_RR(asr_r_r_sat, 0x0000ffff, 0x00000002, 0x00003fff, USR_CLEAR); TEST_R_OP_RR(asr_r_r_sat, 0x00ffffff, 0xfffffff5, 0x7fffffff, USR_OVF); TEST_R_OP_RR(asr_r_r_sat, 0x80000000, 0xfffffff5, 0x80000000, USR_OVF); TEST_XPp_OP_PP(ACS, 0x0004000300020001ULL, 0x0001000200030004ULL, 0x0000000000000000ULL, 0x0004000300030004ULL, 0xf0, USR_CLEAR); TEST_XPp_OP_PP(ACS, 0x0004000300020001ULL, 0x0001000200030004ULL, 0x000affff000d0000ULL, 0x000e0003000f0004ULL, 0xcc, USR_CLEAR); TEST_XPp_OP_PP(ACS, 0x00047fff00020001ULL, 0x00017fff00030004ULL, 0x000a0fff000d0000ULL, 0x000e7fff000f0004ULL, 0xfc, USR_OVF); TEST_XPp_OP_PP(ACS, 0x00047fff00020001ULL, 0x00017fff00030004ULL, 0x000a0fff000d0000ULL, 0x000e7fff000f0004ULL, 0xf0, USR_OVF); /* Floating point */ TEST_R_OP_RR(sfmin, SF_one, SF_small_neg, SF_small_neg, USR_CLEAR); TEST_R_OP_RR(sfmin, SF_one, SF_SNaN, SF_one, USR_FPINVF); TEST_R_OP_RR(sfmin, SF_SNaN, SF_one, SF_one, USR_FPINVF); TEST_R_OP_RR(sfmin, SF_one, SF_QNaN, SF_one, USR_CLEAR); TEST_R_OP_RR(sfmin, SF_QNaN, SF_one, SF_one, USR_CLEAR); TEST_R_OP_RR(sfmin, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfmin, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfmax, SF_one, SF_small_neg, SF_one, USR_CLEAR); TEST_R_OP_RR(sfmax, SF_one, SF_SNaN, SF_one, USR_FPINVF); TEST_R_OP_RR(sfmax, SF_SNaN, SF_one, SF_one, USR_FPINVF); TEST_R_OP_RR(sfmax, SF_one, SF_QNaN, SF_one, USR_CLEAR); TEST_R_OP_RR(sfmax, SF_QNaN, SF_one, SF_one, USR_CLEAR); TEST_R_OP_RR(sfmax, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfmax, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfadd, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sfadd, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfadd, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfadd, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfsub, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sfsub, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfsub, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfsub, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfmpy, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sfmpy, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfmpy, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sfmpy, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RR(sffma, SF_one, SF_one, SF_one, SF_two, USR_CLEAR); TEST_XR_OP_RR(sffma, SF_zero, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_XR_OP_RR(sffma, SF_zero, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RR(sffma, SF_zero, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RR(sffma, SF_zero, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RR(sffms, SF_one, SF_one, SF_one, SF_zero, USR_CLEAR); TEST_XR_OP_RR(sffms, SF_zero, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_XR_OP_RR(sffms, SF_zero, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RR(sffms, SF_zero, SF_QNaN, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RR(sffms, SF_zero, SF_SNaN, SF_QNaN, SF_HEX_NaN, USR_FPINVF); TEST_CMP_RR(sfcmpuo, SF_one, SF_large_pos, 0x00, USR_CLEAR); TEST_CMP_RR(sfcmpuo, SF_INF, SF_large_pos, 0x00, USR_CLEAR); TEST_CMP_RR(sfcmpuo, SF_QNaN, SF_large_pos, 0xff, USR_CLEAR); TEST_CMP_RR(sfcmpuo, SF_QNaN_neg, SF_large_pos, 0xff, USR_CLEAR); TEST_CMP_RR(sfcmpuo, SF_SNaN, SF_large_pos, 0xff, USR_FPINVF); TEST_CMP_RR(sfcmpuo, SF_SNaN_neg, SF_large_pos, 0xff, USR_FPINVF); TEST_CMP_RR(sfcmpuo, SF_QNaN, SF_QNaN, 0xff, USR_CLEAR); TEST_CMP_RR(sfcmpuo, SF_QNaN, SF_SNaN, 0xff, USR_FPINVF); TEST_CMP_RR(sfcmpeq, SF_one, SF_QNaN, 0x00, USR_CLEAR); TEST_CMP_RR(sfcmpeq, SF_one, SF_SNaN, 0x00, USR_FPINVF); TEST_CMP_RR(sfcmpgt, SF_one, SF_QNaN, 0x00, USR_CLEAR); TEST_CMP_RR(sfcmpgt, SF_one, SF_SNaN, 0x00, USR_FPINVF); TEST_CMP_RR(sfcmpge, SF_one, SF_QNaN, 0x00, USR_CLEAR); TEST_CMP_RR(sfcmpge, SF_one, SF_SNaN, 0x00, USR_FPINVF); TEST_P_OP_PP(dfadd, DF_any, DF_QNaN, DF_HEX_NaN, USR_CLEAR); TEST_P_OP_PP(dfadd, DF_any, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfadd, DF_QNaN, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfadd, DF_SNaN, DF_QNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfsub, DF_any, DF_QNaN, DF_HEX_NaN, USR_CLEAR); TEST_P_OP_PP(dfsub, DF_any, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfsub, DF_QNaN, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfsub, DF_SNaN, DF_QNaN, DF_HEX_NaN, USR_FPINVF); #if CORE_IS_V67 TEST_P_OP_PP(dfmin, DF_any, DF_small_neg, DF_small_neg, USR_CLEAR); TEST_P_OP_PP(dfmin, DF_any, DF_SNaN, DF_any, USR_FPINVF); TEST_P_OP_PP(dfmin, DF_SNaN, DF_any, DF_any, USR_FPINVF); TEST_P_OP_PP(dfmin, DF_any, DF_QNaN, DF_any, USR_CLEAR); TEST_P_OP_PP(dfmin, DF_QNaN, DF_any, DF_any, USR_CLEAR); TEST_P_OP_PP(dfmin, DF_SNaN, DF_QNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfmin, DF_QNaN, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfmax, DF_any, DF_small_neg, DF_any, USR_CLEAR); TEST_P_OP_PP(dfmax, DF_any, DF_SNaN, DF_any, USR_FPINVF); TEST_P_OP_PP(dfmax, DF_SNaN, DF_any, DF_any, USR_FPINVF); TEST_P_OP_PP(dfmax, DF_any, DF_QNaN, DF_any, USR_CLEAR); TEST_P_OP_PP(dfmax, DF_QNaN, DF_any, DF_any, USR_CLEAR); TEST_P_OP_PP(dfmax, DF_SNaN, DF_QNaN, DF_HEX_NaN, USR_FPINVF); TEST_P_OP_PP(dfmax, DF_QNaN, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_XP_OP_PP(dfmpyhh, DF_one, DF_one, DF_one, DF_one_hh, USR_CLEAR); TEST_XP_OP_PP(dfmpyhh, DF_zero, DF_any, DF_QNaN, DF_HEX_NaN, USR_CLEAR); TEST_XP_OP_PP(dfmpyhh, DF_zero, DF_any, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_XP_OP_PP(dfmpyhh, DF_zero, DF_QNaN, DF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_XP_OP_PP(dfmpyhh, DF_zero, DF_SNaN, DF_QNaN, DF_HEX_NaN, USR_FPINVF); #else printf("v67 instructions skipped\n"); #endif TEST_CMP_PP(dfcmpuo, DF_small_neg, DF_any, 0x00, USR_CLEAR); TEST_CMP_PP(dfcmpuo, DF_large_pos, DF_any, 0x00, USR_CLEAR); TEST_CMP_PP(dfcmpuo, DF_QNaN, DF_any, 0xff, USR_CLEAR); TEST_CMP_PP(dfcmpuo, DF_QNaN_neg, DF_any, 0xff, USR_CLEAR); TEST_CMP_PP(dfcmpuo, DF_SNaN, DF_any, 0xff, USR_FPINVF); TEST_CMP_PP(dfcmpuo, DF_SNaN_neg, DF_any, 0xff, USR_FPINVF); TEST_CMP_PP(dfcmpuo, DF_QNaN, DF_QNaN, 0xff, USR_CLEAR); TEST_CMP_PP(dfcmpuo, DF_QNaN, DF_SNaN, 0xff, USR_FPINVF); TEST_CMP_PP(dfcmpeq, DF_any, DF_QNaN, 0x00, USR_CLEAR); TEST_CMP_PP(dfcmpeq, DF_any, DF_SNaN, 0x00, USR_FPINVF); TEST_CMP_PP(dfcmpgt, DF_any, DF_QNaN, 0x00, USR_CLEAR); TEST_CMP_PP(dfcmpgt, DF_any, DF_SNaN, 0x00, USR_FPINVF); TEST_CMP_PP(dfcmpge, DF_any, DF_QNaN, 0x00, USR_CLEAR); TEST_CMP_PP(dfcmpge, DF_any, DF_SNaN, 0x00, USR_FPINVF); TEST_P_OP_R(conv_sf2df, SF_QNaN, DF_HEX_NaN, USR_CLEAR); TEST_P_OP_R(conv_sf2df, SF_SNaN, DF_HEX_NaN, USR_FPINVF); TEST_R_OP_R(conv_sf2uw, SF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_R(conv_sf2uw, SF_SNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_R(conv_sf2w, SF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_R(conv_sf2w, SF_SNaN, 0xffffffff, USR_FPINVF); TEST_P_OP_R(conv_sf2ud, SF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_R(conv_sf2ud, SF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_R(conv_sf2d, SF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_R(conv_sf2d, SF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_R_OP_R(conv_sf2uw_chop, SF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_R(conv_sf2uw_chop, SF_SNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_R(conv_sf2w_chop, SF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_R(conv_sf2w_chop, SF_SNaN, 0xffffffff, USR_FPINVF); TEST_P_OP_R(conv_sf2ud_chop, SF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_R(conv_sf2ud_chop, SF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_R(conv_sf2d_chop, SF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_R(conv_sf2d_chop, SF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_R_OP_P(conv_df2sf, DF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_P(conv_df2sf, DF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_P(conv_df2uw, DF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_P(conv_df2uw, DF_SNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_P(conv_df2w, DF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_P(conv_df2w, DF_SNaN, 0xffffffff, USR_FPINVF); TEST_P_OP_P(conv_df2ud, DF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_P(conv_df2ud, DF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_P(conv_df2d, DF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_P(conv_df2d, DF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_R_OP_P(conv_df2uw_chop, DF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_P(conv_df2uw_chop, DF_SNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_P(conv_df2w_chop, DF_QNaN, 0xffffffff, USR_FPINVF); TEST_R_OP_P(conv_df2w_chop, DF_SNaN, 0xffffffff, USR_FPINVF); TEST_P_OP_P(conv_df2ud_chop, DF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_P(conv_df2ud_chop, DF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_P(conv_df2d_chop, DF_QNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_P_OP_P(conv_df2d_chop, DF_SNaN, 0xffffffffffffffffULL, USR_FPINVF); TEST_R_OP_R(conv_uw2sf, 0x00000001, SF_one, USR_CLEAR); TEST_R_OP_R(conv_uw2sf, 0x010020a5, 0x4b801052, USR_FPINPF); TEST_R_OP_R(conv_w2sf, 0x00000001, SF_one, USR_CLEAR); TEST_R_OP_R(conv_w2sf, 0x010020a5, 0x4b801052, USR_FPINPF); TEST_R_OP_P(conv_ud2sf, 0x0000000000000001ULL, SF_one, USR_CLEAR); TEST_R_OP_P(conv_ud2sf, 0x00000000010020a5ULL, 0x4b801052, USR_FPINPF); TEST_R_OP_P(conv_d2sf, 0x0000000000000001ULL, SF_one, USR_CLEAR); TEST_R_OP_P(conv_d2sf, 0x00000000010020a5ULL, 0x4b801052, USR_FPINPF); TEST_XR_OP_RRp(sffma_sc, SF_one, SF_one, SF_one, 1, SF_four, USR_CLEAR); TEST_XR_OP_RRp(sffma_sc, SF_QNaN, SF_one, SF_one, 1, SF_HEX_NaN, USR_CLEAR); TEST_XR_OP_RRp(sffma_sc, SF_one, SF_QNaN, SF_one, 1, SF_HEX_NaN, USR_CLEAR); TEST_XR_OP_RRp(sffma_sc, SF_one, SF_one, SF_QNaN, 1, SF_HEX_NaN, USR_CLEAR); TEST_XR_OP_RRp(sffma_sc, SF_SNaN, SF_one, SF_one, 1, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RRp(sffma_sc, SF_one, SF_SNaN, SF_one, 1, SF_HEX_NaN, USR_FPINVF); TEST_XR_OP_RRp(sffma_sc, SF_one, SF_one, SF_SNaN, 1, SF_HEX_NaN, USR_FPINVF); TEST_Rp_OP_RR(sfrecipa, SF_one, SF_one, SF_one_recip, 0x00, USR_CLEAR); TEST_Rp_OP_RR(sfrecipa, SF_QNaN, SF_one, SF_HEX_NaN, 0x00, USR_CLEAR); TEST_Rp_OP_RR(sfrecipa, SF_one, SF_QNaN, SF_HEX_NaN, 0x00, USR_CLEAR); TEST_Rp_OP_RR(sfrecipa, SF_one, SF_SNaN, SF_HEX_NaN, 0x00, USR_FPINVF); TEST_Rp_OP_RR(sfrecipa, SF_SNaN, SF_one, SF_HEX_NaN, 0x00, USR_FPINVF); TEST_R_OP_RR(sffixupn, SF_one, SF_one, SF_one, USR_CLEAR); TEST_R_OP_RR(sffixupn, SF_QNaN, SF_one, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sffixupn, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sffixupn, SF_SNaN, SF_one, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sffixupn, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sffixupd, SF_one, SF_one, SF_one, USR_CLEAR); TEST_R_OP_RR(sffixupd, SF_QNaN, SF_one, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sffixupd, SF_one, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_RR(sffixupd, SF_SNaN, SF_one, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_RR(sffixupd, SF_one, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_R_OP_R(sffixupr, SF_one, SF_one, USR_CLEAR); TEST_R_OP_R(sffixupr, SF_QNaN, SF_HEX_NaN, USR_CLEAR); TEST_R_OP_R(sffixupr, SF_SNaN, SF_HEX_NaN, USR_FPINVF); TEST_Rp_OP_R(sfinvsqrta, SF_one, SF_one_invsqrta, 0x00, USR_CLEAR); TEST_Rp_OP_R(sfinvsqrta, SF_zero, SF_one, 0x00, USR_CLEAR); TEST_Rp_OP_R(sfinvsqrta, SF_QNaN, SF_HEX_NaN, 0x00, USR_CLEAR); TEST_Rp_OP_R(sfinvsqrta, SF_small_neg, SF_HEX_NaN, 0x00, USR_FPINVF); TEST_Rp_OP_R(sfinvsqrta, SF_SNaN, SF_HEX_NaN, 0x00, USR_FPINVF); puts(err ? "FAIL" : "PASS"); return err; }