/* * QEMU KVM support * * Copyright (C) 2006-2008 Qumranet Technologies * Copyright IBM, Corp. 2008 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include #include #include #include #include #include #include "qemu-common.h" #include "sysemu.h" #include "kvm.h" #include "kvm_i386.h" #include "cpu.h" #include "gdbstub.h" #include "host-utils.h" #include "hw/pc.h" #include "hw/apic.h" #include "ioport.h" #include "hyperv.h" #include "hw/pci.h" //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define MSR_KVM_WALL_CLOCK 0x11 #define MSR_KVM_SYSTEM_TIME 0x12 #ifndef BUS_MCEERR_AR #define BUS_MCEERR_AR 4 #endif #ifndef BUS_MCEERR_AO #define BUS_MCEERR_AO 5 #endif const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_INFO(SET_TSS_ADDR), KVM_CAP_INFO(EXT_CPUID), KVM_CAP_INFO(MP_STATE), KVM_CAP_LAST_INFO }; static bool has_msr_star; static bool has_msr_hsave_pa; static bool has_msr_tsc_deadline; static bool has_msr_async_pf_en; static bool has_msr_pv_eoi_en; static bool has_msr_misc_enable; static int lm_capable_kernel; bool kvm_allows_irq0_override(void) { return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); } static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) { struct kvm_cpuid2 *cpuid; int r, size; size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); cpuid = (struct kvm_cpuid2 *)g_malloc0(size); cpuid->nent = max; r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); if (r == 0 && cpuid->nent >= max) { r = -E2BIG; } if (r < 0) { if (r == -E2BIG) { g_free(cpuid); return NULL; } else { fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", strerror(-r)); exit(1); } } return cpuid; } struct kvm_para_features { int cap; int feature; } para_features[] = { { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, { -1, -1 } }; static int get_para_features(KVMState *s) { int i, features = 0; for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { if (kvm_check_extension(s, para_features[i].cap)) { features |= (1 << para_features[i].feature); } } return features; } uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, uint32_t index, int reg) { struct kvm_cpuid2 *cpuid; int i, max; uint32_t ret = 0; uint32_t cpuid_1_edx; int has_kvm_features = 0; max = 1; while ((cpuid = try_get_cpuid(s, max)) == NULL) { max *= 2; } for (i = 0; i < cpuid->nent; ++i) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { if (cpuid->entries[i].function == KVM_CPUID_FEATURES) { has_kvm_features = 1; } switch (reg) { case R_EAX: ret = cpuid->entries[i].eax; break; case R_EBX: ret = cpuid->entries[i].ebx; break; case R_ECX: ret = cpuid->entries[i].ecx; break; case R_EDX: ret = cpuid->entries[i].edx; switch (function) { case 1: /* KVM before 2.6.30 misreports the following features */ ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; break; case 0x80000001: /* On Intel, kvm returns cpuid according to the Intel spec, * so add missing bits according to the AMD spec: */ cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; break; } break; } } } g_free(cpuid); /* fallback for older kernels */ if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) { ret = get_para_features(s); } return ret; } typedef struct HWPoisonPage { ram_addr_t ram_addr; QLIST_ENTRY(HWPoisonPage) list; } HWPoisonPage; static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = QLIST_HEAD_INITIALIZER(hwpoison_page_list); static void kvm_unpoison_all(void *param) { HWPoisonPage *page, *next_page; QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { QLIST_REMOVE(page, list); qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); g_free(page); } } static void kvm_hwpoison_page_add(ram_addr_t ram_addr) { HWPoisonPage *page; QLIST_FOREACH(page, &hwpoison_page_list, list) { if (page->ram_addr == ram_addr) { return; } } page = g_malloc(sizeof(HWPoisonPage)); page->ram_addr = ram_addr; QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); } static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, int *max_banks) { int r; r = kvm_check_extension(s, KVM_CAP_MCE); if (r > 0) { *max_banks = r; return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); } return -ENOSYS; } static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) { CPUX86State *env = &cpu->env; uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; uint64_t mcg_status = MCG_STATUS_MCIP; if (code == BUS_MCEERR_AR) { status |= MCI_STATUS_AR | 0x134; mcg_status |= MCG_STATUS_EIPV; } else { status |= 0xc0; mcg_status |= MCG_STATUS_RIPV; } cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, (MCM_ADDR_PHYS << 6) | 0xc, cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0); } static void hardware_memory_error(void) { fprintf(stderr, "Hardware memory error!\n"); exit(1); } int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr) { X86CPU *cpu = x86_env_get_cpu(env); ram_addr_t ram_addr; hwaddr paddr; if ((env->mcg_cap & MCG_SER_P) && addr && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { if (qemu_ram_addr_from_host(addr, &ram_addr) || !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) { fprintf(stderr, "Hardware memory error for memory used by " "QEMU itself instead of guest system!\n"); /* Hope we are lucky for AO MCE */ if (code == BUS_MCEERR_AO) { return 0; } else { hardware_memory_error(); } } kvm_hwpoison_page_add(ram_addr); kvm_mce_inject(cpu, paddr, code); } else { if (code == BUS_MCEERR_AO) { return 0; } else if (code == BUS_MCEERR_AR) { hardware_memory_error(); } else { return 1; } } return 0; } int kvm_arch_on_sigbus(int code, void *addr) { if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { ram_addr_t ram_addr; hwaddr paddr; /* Hope we are lucky for AO MCE */ if (qemu_ram_addr_from_host(addr, &ram_addr) || !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr, &paddr)) { fprintf(stderr, "Hardware memory error for memory used by " "QEMU itself instead of guest system!: %p\n", addr); return 0; } kvm_hwpoison_page_add(ram_addr); kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code); } else { if (code == BUS_MCEERR_AO) { return 0; } else if (code == BUS_MCEERR_AR) { hardware_memory_error(); } else { return 1; } } return 0; } static int kvm_inject_mce_oldstyle(CPUX86State *env) { if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { unsigned int bank, bank_num = env->mcg_cap & 0xff; struct kvm_x86_mce mce; env->exception_injected = -1; /* * There must be at least one bank in use if an MCE is pending. * Find it and use its values for the event injection. */ for (bank = 0; bank < bank_num; bank++) { if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { break; } } assert(bank < bank_num); mce.bank = bank; mce.status = env->mce_banks[bank * 4 + 1]; mce.mcg_status = env->mcg_status; mce.addr = env->mce_banks[bank * 4 + 2]; mce.misc = env->mce_banks[bank * 4 + 3]; return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce); } return 0; } static void cpu_update_state(void *opaque, int running, RunState state) { CPUX86State *env = opaque; if (running) { env->tsc_valid = false; } } int kvm_arch_init_vcpu(CPUX86State *env) { struct { struct kvm_cpuid2 cpuid; struct kvm_cpuid_entry2 entries[100]; } QEMU_PACKED cpuid_data; KVMState *s = env->kvm_state; uint32_t limit, i, j, cpuid_i; uint32_t unused; struct kvm_cpuid_entry2 *c; uint32_t signature[3]; int r; env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER; env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX); env->cpuid_ext_features |= i; if (j && kvm_irqchip_in_kernel() && kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER; } env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX); env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_ECX); env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A, 0, R_EDX); cpuid_i = 0; /* Paravirtualization CPUIDs */ c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = KVM_CPUID_SIGNATURE; if (!hyperv_enabled()) { memcpy(signature, "KVMKVMKVM\0\0\0", 12); c->eax = 0; } else { memcpy(signature, "Microsoft Hv", 12); c->eax = HYPERV_CPUID_MIN; } c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = KVM_CPUID_FEATURES; c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX); if (hyperv_enabled()) { memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); c->eax = signature[0]; c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = HYPERV_CPUID_VERSION; c->eax = 0x00001bbc; c->ebx = 0x00060001; c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = HYPERV_CPUID_FEATURES; if (hyperv_relaxed_timing_enabled()) { c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; } if (hyperv_vapic_recommended()) { c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; } c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; if (hyperv_relaxed_timing_enabled()) { c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; } if (hyperv_vapic_recommended()) { c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; } c->ebx = hyperv_get_spinlock_retries(); c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; c->eax = 0x40; c->ebx = 0x40; c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = KVM_CPUID_SIGNATURE_NEXT; memcpy(signature, "KVMKVMKVM\0\0\0", 12); c->eax = 0; c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; } has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); for (i = 0; i <= limit; i++) { c = &cpuid_data.entries[cpuid_i++]; switch (i) { case 2: { /* Keep reading function 2 till all the input is received */ int times; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | KVM_CPUID_FLAG_STATE_READ_NEXT; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); times = c->eax & 0xff; for (j = 1; j < times; ++j) { c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } break; } case 4: case 0xb: case 0xd: for (j = 0; ; j++) { if (i == 0xd && j == 64) { break; } c->function = i; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; c->index = j; cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); if (i == 4 && c->eax == 0) { break; } if (i == 0xb && !(c->ecx & 0xff00)) { break; } if (i == 0xd && c->eax == 0) { continue; } c = &cpuid_data.entries[cpuid_i++]; } break; default: c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); break; } } cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); for (i = 0x80000000; i <= limit; i++) { c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } /* Call Centaur's CPUID instructions they are supported. */ if (env->cpuid_xlevel2 > 0) { env->cpuid_ext4_features &= kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX); cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); for (i = 0xC0000000; i <= limit; i++) { c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } } cpuid_data.cpuid.nent = cpuid_i; if (((env->cpuid_version >> 8)&0xF) >= 6 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { uint64_t mcg_cap; int banks; int ret; ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks); if (ret < 0) { fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); return ret; } if (banks > MCE_BANKS_DEF) { banks = MCE_BANKS_DEF; } mcg_cap &= MCE_CAP_DEF; mcg_cap |= banks; ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap); if (ret < 0) { fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); return ret; } env->mcg_cap = mcg_cap; } qemu_add_vm_change_state_handler(cpu_update_state, env); cpuid_data.cpuid.padding = 0; r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); if (r) { return r; } r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL); if (r && env->tsc_khz) { r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz); if (r < 0) { fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); return r; } } if (kvm_has_xsave()) { env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); } return 0; } void kvm_arch_reset_vcpu(CPUX86State *env) { X86CPU *cpu = x86_env_get_cpu(env); env->exception_injected = -1; env->interrupt_injected = -1; env->xcr0 = 1; if (kvm_irqchip_in_kernel()) { env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : KVM_MP_STATE_UNINITIALIZED; } else { env->mp_state = KVM_MP_STATE_RUNNABLE; } } static int kvm_get_supported_msrs(KVMState *s) { static int kvm_supported_msrs; int ret = 0; /* first time */ if (kvm_supported_msrs == 0) { struct kvm_msr_list msr_list, *kvm_msr_list; kvm_supported_msrs = -1; /* Obtain MSR list from KVM. These are the MSRs that we must * save/restore */ msr_list.nmsrs = 0; ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); if (ret < 0 && ret != -E2BIG) { return ret; } /* Old kernel modules had a bug and could write beyond the provided memory. Allocate at least a safe amount of 1K. */ kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))); kvm_msr_list->nmsrs = msr_list.nmsrs; ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); if (ret >= 0) { int i; for (i = 0; i < kvm_msr_list->nmsrs; i++) { if (kvm_msr_list->indices[i] == MSR_STAR) { has_msr_star = true; continue; } if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { has_msr_hsave_pa = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { has_msr_tsc_deadline = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { has_msr_misc_enable = true; continue; } } } g_free(kvm_msr_list); } return ret; } int kvm_arch_init(KVMState *s) { QemuOptsList *list = qemu_find_opts("machine"); uint64_t identity_base = 0xfffbc000; uint64_t shadow_mem; int ret; struct utsname utsname; ret = kvm_get_supported_msrs(s); if (ret < 0) { return ret; } uname(&utsname); lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; /* * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. * In order to use vm86 mode, an EPT identity map and a TSS are needed. * Since these must be part of guest physical memory, we need to allocate * them, both by setting their start addresses in the kernel and by * creating a corresponding e820 entry. We need 4 pages before the BIOS. * * Older KVM versions may not support setting the identity map base. In * that case we need to stick with the default, i.e. a 256K maximum BIOS * size. */ if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { /* Allows up to 16M BIOSes. */ identity_base = 0xfeffc000; ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); if (ret < 0) { return ret; } } /* Set TSS base one page after EPT identity map. */ ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); if (ret < 0) { return ret; } /* Tell fw_cfg to notify the BIOS to reserve the range. */ ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); if (ret < 0) { fprintf(stderr, "e820_add_entry() table is full\n"); return ret; } qemu_register_reset(kvm_unpoison_all, NULL); if (!QTAILQ_EMPTY(&list->head)) { shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head), "kvm_shadow_mem", -1); if (shadow_mem != -1) { shadow_mem /= 4096; ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); if (ret < 0) { return ret; } } } return 0; } static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = 3; lhs->present = 1; lhs->dpl = 3; lhs->db = 0; lhs->s = 1; lhs->l = 0; lhs->g = 0; lhs->avl = 0; lhs->unusable = 0; } static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { unsigned flags = rhs->flags; lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; lhs->present = (flags & DESC_P_MASK) != 0; lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; lhs->db = (flags >> DESC_B_SHIFT) & 1; lhs->s = (flags & DESC_S_MASK) != 0; lhs->l = (flags >> DESC_L_SHIFT) & 1; lhs->g = (flags & DESC_G_MASK) != 0; lhs->avl = (flags & DESC_AVL_MASK) != 0; lhs->unusable = 0; lhs->padding = 0; } static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | (rhs->present * DESC_P_MASK) | (rhs->dpl << DESC_DPL_SHIFT) | (rhs->db << DESC_B_SHIFT) | (rhs->s * DESC_S_MASK) | (rhs->l << DESC_L_SHIFT) | (rhs->g * DESC_G_MASK) | (rhs->avl * DESC_AVL_MASK); } static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) { if (set) { *kvm_reg = *qemu_reg; } else { *qemu_reg = *kvm_reg; } } static int kvm_getput_regs(CPUX86State *env, int set) { struct kvm_regs regs; int ret = 0; if (!set) { ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } } kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); #ifdef TARGET_X86_64 kvm_getput_reg(®s.r8, &env->regs[8], set); kvm_getput_reg(®s.r9, &env->regs[9], set); kvm_getput_reg(®s.r10, &env->regs[10], set); kvm_getput_reg(®s.r11, &env->regs[11], set); kvm_getput_reg(®s.r12, &env->regs[12], set); kvm_getput_reg(®s.r13, &env->regs[13], set); kvm_getput_reg(®s.r14, &env->regs[14], set); kvm_getput_reg(®s.r15, &env->regs[15], set); #endif kvm_getput_reg(®s.rflags, &env->eflags, set); kvm_getput_reg(®s.rip, &env->eip, set); if (set) { ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); } return ret; } static int kvm_put_fpu(CPUX86State *env) { struct kvm_fpu fpu; int i; memset(&fpu, 0, sizeof fpu); fpu.fsw = env->fpus & ~(7 << 11); fpu.fsw |= (env->fpstt & 7) << 11; fpu.fcw = env->fpuc; fpu.last_opcode = env->fpop; fpu.last_ip = env->fpip; fpu.last_dp = env->fpdp; for (i = 0; i < 8; ++i) { fpu.ftwx |= (!env->fptags[i]) << i; } memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); fpu.mxcsr = env->mxcsr; return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); } #define XSAVE_FCW_FSW 0 #define XSAVE_FTW_FOP 1 #define XSAVE_CWD_RIP 2 #define XSAVE_CWD_RDP 4 #define XSAVE_MXCSR 6 #define XSAVE_ST_SPACE 8 #define XSAVE_XMM_SPACE 40 #define XSAVE_XSTATE_BV 128 #define XSAVE_YMMH_SPACE 144 static int kvm_put_xsave(CPUX86State *env) { struct kvm_xsave* xsave = env->kvm_xsave_buf; uint16_t cwd, swd, twd; int i, r; if (!kvm_has_xsave()) { return kvm_put_fpu(env); } memset(xsave, 0, sizeof(struct kvm_xsave)); twd = 0; swd = env->fpus & ~(7 << 11); swd |= (env->fpstt & 7) << 11; cwd = env->fpuc; for (i = 0; i < 8; ++i) { twd |= (!env->fptags[i]) << i; } xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, sizeof env->fpregs); memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, sizeof env->xmm_regs); xsave->region[XSAVE_MXCSR] = env->mxcsr; *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, sizeof env->ymmh_regs); r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); return r; } static int kvm_put_xcrs(CPUX86State *env) { struct kvm_xcrs xcrs; if (!kvm_has_xcrs()) { return 0; } xcrs.nr_xcrs = 1; xcrs.flags = 0; xcrs.xcrs[0].xcr = 0; xcrs.xcrs[0].value = env->xcr0; return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); } static int kvm_put_sregs(CPUX86State *env) { struct kvm_sregs sregs; memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); if (env->interrupt_injected >= 0) { sregs.interrupt_bitmap[env->interrupt_injected / 64] |= (uint64_t)1 << (env->interrupt_injected % 64); } if ((env->eflags & VM_MASK)) { set_v8086_seg(&sregs.cs, &env->segs[R_CS]); set_v8086_seg(&sregs.ds, &env->segs[R_DS]); set_v8086_seg(&sregs.es, &env->segs[R_ES]); set_v8086_seg(&sregs.fs, &env->segs[R_FS]); set_v8086_seg(&sregs.gs, &env->segs[R_GS]); set_v8086_seg(&sregs.ss, &env->segs[R_SS]); } else { set_seg(&sregs.cs, &env->segs[R_CS]); set_seg(&sregs.ds, &env->segs[R_DS]); set_seg(&sregs.es, &env->segs[R_ES]); set_seg(&sregs.fs, &env->segs[R_FS]); set_seg(&sregs.gs, &env->segs[R_GS]); set_seg(&sregs.ss, &env->segs[R_SS]); } set_seg(&sregs.tr, &env->tr); set_seg(&sregs.ldt, &env->ldt); sregs.idt.limit = env->idt.limit; sregs.idt.base = env->idt.base; memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); sregs.gdt.limit = env->gdt.limit; sregs.gdt.base = env->gdt.base; memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); sregs.cr0 = env->cr[0]; sregs.cr2 = env->cr[2]; sregs.cr3 = env->cr[3]; sregs.cr4 = env->cr[4]; sregs.cr8 = cpu_get_apic_tpr(env->apic_state); sregs.apic_base = cpu_get_apic_base(env->apic_state); sregs.efer = env->efer; return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); } static void kvm_msr_entry_set(struct kvm_msr_entry *entry, uint32_t index, uint64_t value) { entry->index = index; entry->data = value; } static int kvm_put_msrs(CPUX86State *env, int level) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[100]; } msr_data; struct kvm_msr_entry *msrs = msr_data.entries; int n = 0; kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); if (has_msr_star) { kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); } if (has_msr_hsave_pa) { kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); } if (has_msr_tsc_deadline) { kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline); } if (has_msr_misc_enable) { kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, env->msr_ia32_misc_enable); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); } #endif if (level == KVM_PUT_FULL_STATE) { /* * KVM is yet unable to synchronize TSC values of multiple VCPUs on * writeback. Until this is fixed, we only write the offset to SMP * guests after migration, desynchronizing the VCPUs, but avoiding * huge jump-backs that would occur without any writeback at all. */ if (smp_cpus == 1 || env->tsc != 0) { kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); } } /* * The following paravirtual MSRs have side effects on the guest or are * too heavy for normal writeback. Limit them to reset or full state * updates. */ if (level >= KVM_PUT_RESET_STATE) { kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr); kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); if (has_msr_async_pf_en) { kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); } if (has_msr_pv_eoi_en) { kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); } if (hyperv_hypercall_available()) { kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0); kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0); } if (hyperv_vapic_recommended()) { kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0); } } if (env->mcg_cap) { int i; kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); } } msr_data.info.nmsrs = n; return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); } static int kvm_get_fpu(CPUX86State *env) { struct kvm_fpu fpu; int i, ret; ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); if (ret < 0) { return ret; } env->fpstt = (fpu.fsw >> 11) & 7; env->fpus = fpu.fsw; env->fpuc = fpu.fcw; env->fpop = fpu.last_opcode; env->fpip = fpu.last_ip; env->fpdp = fpu.last_dp; for (i = 0; i < 8; ++i) { env->fptags[i] = !((fpu.ftwx >> i) & 1); } memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); env->mxcsr = fpu.mxcsr; return 0; } static int kvm_get_xsave(CPUX86State *env) { struct kvm_xsave* xsave = env->kvm_xsave_buf; int ret, i; uint16_t cwd, swd, twd; if (!kvm_has_xsave()) { return kvm_get_fpu(env); } ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); if (ret < 0) { return ret; } cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); env->fpstt = (swd >> 11) & 7; env->fpus = swd; env->fpuc = cwd; for (i = 0; i < 8; ++i) { env->fptags[i] = !((twd >> i) & 1); } memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); env->mxcsr = xsave->region[XSAVE_MXCSR]; memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], sizeof env->fpregs); memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], sizeof env->xmm_regs); env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], sizeof env->ymmh_regs); return 0; } static int kvm_get_xcrs(CPUX86State *env) { int i, ret; struct kvm_xcrs xcrs; if (!kvm_has_xcrs()) { return 0; } ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); if (ret < 0) { return ret; } for (i = 0; i < xcrs.nr_xcrs; i++) { /* Only support xcr0 now */ if (xcrs.xcrs[0].xcr == 0) { env->xcr0 = xcrs.xcrs[0].value; break; } } return 0; } static int kvm_get_sregs(CPUX86State *env) { struct kvm_sregs sregs; uint32_t hflags; int bit, i, ret; ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); if (ret < 0) { return ret; } /* There can only be one pending IRQ set in the bitmap at a time, so try to find it and save its number instead (-1 for none). */ env->interrupt_injected = -1; for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { if (sregs.interrupt_bitmap[i]) { bit = ctz64(sregs.interrupt_bitmap[i]); env->interrupt_injected = i * 64 + bit; break; } } get_seg(&env->segs[R_CS], &sregs.cs); get_seg(&env->segs[R_DS], &sregs.ds); get_seg(&env->segs[R_ES], &sregs.es); get_seg(&env->segs[R_FS], &sregs.fs); get_seg(&env->segs[R_GS], &sregs.gs); get_seg(&env->segs[R_SS], &sregs.ss); get_seg(&env->tr, &sregs.tr); get_seg(&env->ldt, &sregs.ldt); env->idt.limit = sregs.idt.limit; env->idt.base = sregs.idt.base; env->gdt.limit = sregs.gdt.limit; env->gdt.base = sregs.gdt.base; env->cr[0] = sregs.cr0; env->cr[2] = sregs.cr2; env->cr[3] = sregs.cr3; env->cr[4] = sregs.cr4; env->efer = sregs.efer; /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ #define HFLAG_COPY_MASK \ ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); if (env->efer & MSR_EFER_LMA) { hflags |= HF_LMA_MASK; } if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; } else { hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_CS32_SHIFT); hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_SS32_SHIFT); if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || !(hflags & HF_CS32_MASK)) { hflags |= HF_ADDSEG_MASK; } else { hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; } } env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; return 0; } static int kvm_get_msrs(CPUX86State *env) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[100]; } msr_data; struct kvm_msr_entry *msrs = msr_data.entries; int ret, i, n; n = 0; msrs[n++].index = MSR_IA32_SYSENTER_CS; msrs[n++].index = MSR_IA32_SYSENTER_ESP; msrs[n++].index = MSR_IA32_SYSENTER_EIP; msrs[n++].index = MSR_PAT; if (has_msr_star) { msrs[n++].index = MSR_STAR; } if (has_msr_hsave_pa) { msrs[n++].index = MSR_VM_HSAVE_PA; } if (has_msr_tsc_deadline) { msrs[n++].index = MSR_IA32_TSCDEADLINE; } if (has_msr_misc_enable) { msrs[n++].index = MSR_IA32_MISC_ENABLE; } if (!env->tsc_valid) { msrs[n++].index = MSR_IA32_TSC; env->tsc_valid = !runstate_is_running(); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { msrs[n++].index = MSR_CSTAR; msrs[n++].index = MSR_KERNELGSBASE; msrs[n++].index = MSR_FMASK; msrs[n++].index = MSR_LSTAR; } #endif msrs[n++].index = MSR_KVM_SYSTEM_TIME; msrs[n++].index = MSR_KVM_WALL_CLOCK; if (has_msr_async_pf_en) { msrs[n++].index = MSR_KVM_ASYNC_PF_EN; } if (has_msr_pv_eoi_en) { msrs[n++].index = MSR_KVM_PV_EOI_EN; } if (env->mcg_cap) { msrs[n++].index = MSR_MCG_STATUS; msrs[n++].index = MSR_MCG_CTL; for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { msrs[n++].index = MSR_MC0_CTL + i; } } msr_data.info.nmsrs = n; ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); if (ret < 0) { return ret; } for (i = 0; i < ret; i++) { switch (msrs[i].index) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = msrs[i].data; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = msrs[i].data; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = msrs[i].data; break; case MSR_PAT: env->pat = msrs[i].data; break; case MSR_STAR: env->star = msrs[i].data; break; #ifdef TARGET_X86_64 case MSR_CSTAR: env->cstar = msrs[i].data; break; case MSR_KERNELGSBASE: env->kernelgsbase = msrs[i].data; break; case MSR_FMASK: env->fmask = msrs[i].data; break; case MSR_LSTAR: env->lstar = msrs[i].data; break; #endif case MSR_IA32_TSC: env->tsc = msrs[i].data; break; case MSR_IA32_TSCDEADLINE: env->tsc_deadline = msrs[i].data; break; case MSR_VM_HSAVE_PA: env->vm_hsave = msrs[i].data; break; case MSR_KVM_SYSTEM_TIME: env->system_time_msr = msrs[i].data; break; case MSR_KVM_WALL_CLOCK: env->wall_clock_msr = msrs[i].data; break; case MSR_MCG_STATUS: env->mcg_status = msrs[i].data; break; case MSR_MCG_CTL: env->mcg_ctl = msrs[i].data; break; case MSR_IA32_MISC_ENABLE: env->msr_ia32_misc_enable = msrs[i].data; break; default: if (msrs[i].index >= MSR_MC0_CTL && msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; } break; case MSR_KVM_ASYNC_PF_EN: env->async_pf_en_msr = msrs[i].data; break; case MSR_KVM_PV_EOI_EN: env->pv_eoi_en_msr = msrs[i].data; break; } } return 0; } static int kvm_put_mp_state(CPUX86State *env) { struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); } static int kvm_get_mp_state(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_mp_state mp_state; int ret; ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); if (ret < 0) { return ret; } env->mp_state = mp_state.mp_state; if (kvm_irqchip_in_kernel()) { env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); } return 0; } static int kvm_get_apic(CPUX86State *env) { DeviceState *apic = env->apic_state; struct kvm_lapic_state kapic; int ret; if (apic && kvm_irqchip_in_kernel()) { ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic); if (ret < 0) { return ret; } kvm_get_apic_state(apic, &kapic); } return 0; } static int kvm_put_apic(CPUX86State *env) { DeviceState *apic = env->apic_state; struct kvm_lapic_state kapic; if (apic && kvm_irqchip_in_kernel()) { kvm_put_apic_state(apic, &kapic); return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic); } return 0; } static int kvm_put_vcpu_events(CPUX86State *env, int level) { struct kvm_vcpu_events events; if (!kvm_has_vcpu_events()) { return 0; } events.exception.injected = (env->exception_injected >= 0); events.exception.nr = env->exception_injected; events.exception.has_error_code = env->has_error_code; events.exception.error_code = env->error_code; events.exception.pad = 0; events.interrupt.injected = (env->interrupt_injected >= 0); events.interrupt.nr = env->interrupt_injected; events.interrupt.soft = env->soft_interrupt; events.nmi.injected = env->nmi_injected; events.nmi.pending = env->nmi_pending; events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); events.nmi.pad = 0; events.sipi_vector = env->sipi_vector; events.flags = 0; if (level >= KVM_PUT_RESET_STATE) { events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; } return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); } static int kvm_get_vcpu_events(CPUX86State *env) { struct kvm_vcpu_events events; int ret; if (!kvm_has_vcpu_events()) { return 0; } ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); if (ret < 0) { return ret; } env->exception_injected = events.exception.injected ? events.exception.nr : -1; env->has_error_code = events.exception.has_error_code; env->error_code = events.exception.error_code; env->interrupt_injected = events.interrupt.injected ? events.interrupt.nr : -1; env->soft_interrupt = events.interrupt.soft; env->nmi_injected = events.nmi.injected; env->nmi_pending = events.nmi.pending; if (events.nmi.masked) { env->hflags2 |= HF2_NMI_MASK; } else { env->hflags2 &= ~HF2_NMI_MASK; } env->sipi_vector = events.sipi_vector; return 0; } static int kvm_guest_debug_workarounds(CPUX86State *env) { int ret = 0; unsigned long reinject_trap = 0; if (!kvm_has_vcpu_events()) { if (env->exception_injected == 1) { reinject_trap = KVM_GUESTDBG_INJECT_DB; } else if (env->exception_injected == 3) { reinject_trap = KVM_GUESTDBG_INJECT_BP; } env->exception_injected = -1; } /* * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF * injected via SET_GUEST_DEBUG while updating GP regs. Work around this * by updating the debug state once again if single-stepping is on. * Another reason to call kvm_update_guest_debug here is a pending debug * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to * reinject them via SET_GUEST_DEBUG. */ if (reinject_trap || (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { ret = kvm_update_guest_debug(env, reinject_trap); } return ret; } static int kvm_put_debugregs(CPUX86State *env) { struct kvm_debugregs dbgregs; int i; if (!kvm_has_debugregs()) { return 0; } for (i = 0; i < 4; i++) { dbgregs.db[i] = env->dr[i]; } dbgregs.dr6 = env->dr[6]; dbgregs.dr7 = env->dr[7]; dbgregs.flags = 0; return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); } static int kvm_get_debugregs(CPUX86State *env) { struct kvm_debugregs dbgregs; int i, ret; if (!kvm_has_debugregs()) { return 0; } ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); if (ret < 0) { return ret; } for (i = 0; i < 4; i++) { env->dr[i] = dbgregs.db[i]; } env->dr[4] = env->dr[6] = dbgregs.dr6; env->dr[5] = env->dr[7] = dbgregs.dr7; return 0; } int kvm_arch_put_registers(CPUX86State *env, int level) { CPUState *cpu = ENV_GET_CPU(env); int ret; assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); ret = kvm_getput_regs(env, 1); if (ret < 0) { return ret; } ret = kvm_put_xsave(env); if (ret < 0) { return ret; } ret = kvm_put_xcrs(env); if (ret < 0) { return ret; } ret = kvm_put_sregs(env); if (ret < 0) { return ret; } /* must be before kvm_put_msrs */ ret = kvm_inject_mce_oldstyle(env); if (ret < 0) { return ret; } ret = kvm_put_msrs(env, level); if (ret < 0) { return ret; } if (level >= KVM_PUT_RESET_STATE) { ret = kvm_put_mp_state(env); if (ret < 0) { return ret; } ret = kvm_put_apic(env); if (ret < 0) { return ret; } } ret = kvm_put_vcpu_events(env, level); if (ret < 0) { return ret; } ret = kvm_put_debugregs(env); if (ret < 0) { return ret; } /* must be last */ ret = kvm_guest_debug_workarounds(env); if (ret < 0) { return ret; } return 0; } int kvm_arch_get_registers(CPUX86State *env) { X86CPU *cpu = x86_env_get_cpu(env); int ret; assert(cpu_is_stopped(CPU(cpu)) || qemu_cpu_is_self(CPU(cpu))); ret = kvm_getput_regs(env, 0); if (ret < 0) { return ret; } ret = kvm_get_xsave(env); if (ret < 0) { return ret; } ret = kvm_get_xcrs(env); if (ret < 0) { return ret; } ret = kvm_get_sregs(env); if (ret < 0) { return ret; } ret = kvm_get_msrs(env); if (ret < 0) { return ret; } ret = kvm_get_mp_state(cpu); if (ret < 0) { return ret; } ret = kvm_get_apic(env); if (ret < 0) { return ret; } ret = kvm_get_vcpu_events(env); if (ret < 0) { return ret; } ret = kvm_get_debugregs(env); if (ret < 0) { return ret; } return 0; } void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run) { int ret; /* Inject NMI */ if (env->interrupt_request & CPU_INTERRUPT_NMI) { env->interrupt_request &= ~CPU_INTERRUPT_NMI; DPRINTF("injected NMI\n"); ret = kvm_vcpu_ioctl(env, KVM_NMI); if (ret < 0) { fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", strerror(-ret)); } } if (!kvm_irqchip_in_kernel()) { /* Force the VCPU out of its inner loop to process any INIT requests * or pending TPR access reports. */ if (env->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { env->exit_request = 1; } /* Try to inject an interrupt if the guest can accept it */ if (run->ready_for_interrupt_injection && (env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) { int irq; env->interrupt_request &= ~CPU_INTERRUPT_HARD; irq = cpu_get_pic_interrupt(env); if (irq >= 0) { struct kvm_interrupt intr; intr.irq = irq; DPRINTF("injected interrupt %d\n", irq); ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); if (ret < 0) { fprintf(stderr, "KVM: injection failed, interrupt lost (%s)\n", strerror(-ret)); } } } /* If we have an interrupt but the guest is not ready to receive an * interrupt, request an interrupt window exit. This will * cause a return to userspace as soon as the guest is ready to * receive interrupts. */ if ((env->interrupt_request & CPU_INTERRUPT_HARD)) { run->request_interrupt_window = 1; } else { run->request_interrupt_window = 0; } DPRINTF("setting tpr\n"); run->cr8 = cpu_get_apic_tpr(env->apic_state); } } void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run) { if (run->if_flag) { env->eflags |= IF_MASK; } else { env->eflags &= ~IF_MASK; } cpu_set_apic_tpr(env->apic_state, run->cr8); cpu_set_apic_base(env->apic_state, run->apic_base); } int kvm_arch_process_async_events(CPUX86State *env) { X86CPU *cpu = x86_env_get_cpu(env); if (env->interrupt_request & CPU_INTERRUPT_MCE) { /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ assert(env->mcg_cap); env->interrupt_request &= ~CPU_INTERRUPT_MCE; kvm_cpu_synchronize_state(env); if (env->exception_injected == EXCP08_DBLE) { /* this means triple fault */ qemu_system_reset_request(); env->exit_request = 1; return 0; } env->exception_injected = EXCP12_MCHK; env->has_error_code = 0; env->halted = 0; if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { env->mp_state = KVM_MP_STATE_RUNNABLE; } } if (kvm_irqchip_in_kernel()) { return 0; } if (env->interrupt_request & CPU_INTERRUPT_POLL) { env->interrupt_request &= ~CPU_INTERRUPT_POLL; apic_poll_irq(env->apic_state); } if (((env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (env->interrupt_request & CPU_INTERRUPT_NMI)) { env->halted = 0; } if (env->interrupt_request & CPU_INTERRUPT_INIT) { kvm_cpu_synchronize_state(env); do_cpu_init(cpu); } if (env->interrupt_request & CPU_INTERRUPT_SIPI) { kvm_cpu_synchronize_state(env); do_cpu_sipi(cpu); } if (env->interrupt_request & CPU_INTERRUPT_TPR) { env->interrupt_request &= ~CPU_INTERRUPT_TPR; kvm_cpu_synchronize_state(env); apic_handle_tpr_access_report(env->apic_state, env->eip, env->tpr_access_type); } return env->halted; } static int kvm_handle_halt(CPUX86State *env) { if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) && !(env->interrupt_request & CPU_INTERRUPT_NMI)) { env->halted = 1; return EXCP_HLT; } return 0; } static int kvm_handle_tpr_access(CPUX86State *env) { struct kvm_run *run = env->kvm_run; apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, run->tpr_access.is_write ? TPR_ACCESS_WRITE : TPR_ACCESS_READ); return 1; } int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) { static const uint8_t int3 = 0xcc; if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) { uint8_t int3; if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { return -EINVAL; } return 0; } static struct { target_ulong addr; int len; int type; } hw_breakpoint[4]; static int nb_hw_breakpoint; static int find_hw_breakpoint(target_ulong addr, int len, int type) { int n; for (n = 0; n < nb_hw_breakpoint; n++) { if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && (hw_breakpoint[n].len == len || len == -1)) { return n; } } return -1; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: len = 1; break; case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_ACCESS: switch (len) { case 1: break; case 2: case 4: case 8: if (addr & (len - 1)) { return -EINVAL; } break; default: return -EINVAL; } break; default: return -ENOSYS; } if (nb_hw_breakpoint == 4) { return -ENOBUFS; } if (find_hw_breakpoint(addr, len, type) >= 0) { return -EEXIST; } hw_breakpoint[nb_hw_breakpoint].addr = addr; hw_breakpoint[nb_hw_breakpoint].len = len; hw_breakpoint[nb_hw_breakpoint].type = type; nb_hw_breakpoint++; return 0; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { int n; n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); if (n < 0) { return -ENOENT; } nb_hw_breakpoint--; hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; return 0; } void kvm_arch_remove_all_hw_breakpoints(void) { nb_hw_breakpoint = 0; } static CPUWatchpoint hw_watchpoint; static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info) { int ret = 0; int n; if (arch_info->exception == 1) { if (arch_info->dr6 & (1 << 14)) { if (cpu_single_env->singlestep_enabled) { ret = EXCP_DEBUG; } } else { for (n = 0; n < 4; n++) { if (arch_info->dr6 & (1 << n)) { switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { case 0x0: ret = EXCP_DEBUG; break; case 0x1: ret = EXCP_DEBUG; cpu_single_env->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_WRITE; break; case 0x3: ret = EXCP_DEBUG; cpu_single_env->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_ACCESS; break; } } } } } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) { ret = EXCP_DEBUG; } if (ret == 0) { cpu_synchronize_state(cpu_single_env); assert(cpu_single_env->exception_injected == -1); /* pass to guest */ cpu_single_env->exception_injected = arch_info->exception; cpu_single_env->has_error_code = 0; } return ret; } void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg) { const uint8_t type_code[] = { [GDB_BREAKPOINT_HW] = 0x0, [GDB_WATCHPOINT_WRITE] = 0x1, [GDB_WATCHPOINT_ACCESS] = 0x3 }; const uint8_t len_code[] = { [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 }; int n; if (kvm_sw_breakpoints_active(env)) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; } if (nb_hw_breakpoint > 0) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; dbg->arch.debugreg[7] = 0x0600; for (n = 0; n < nb_hw_breakpoint; n++) { dbg->arch.debugreg[n] = hw_breakpoint[n].addr; dbg->arch.debugreg[7] |= (2 << (n * 2)) | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); } } } static bool host_supports_vmx(void) { uint32_t ecx, unused; host_cpuid(1, 0, &unused, &unused, &ecx, &unused); return ecx & CPUID_EXT_VMX; } #define VMX_INVALID_GUEST_STATE 0x80000021 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run) { uint64_t code; int ret; switch (run->exit_reason) { case KVM_EXIT_HLT: DPRINTF("handle_hlt\n"); ret = kvm_handle_halt(env); break; case KVM_EXIT_SET_TPR: ret = 0; break; case KVM_EXIT_TPR_ACCESS: ret = kvm_handle_tpr_access(env); break; case KVM_EXIT_FAIL_ENTRY: code = run->fail_entry.hardware_entry_failure_reason; fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", code); if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { fprintf(stderr, "\nIf you're running a guest on an Intel machine without " "unrestricted mode\n" "support, the failure can be most likely due to the guest " "entering an invalid\n" "state for Intel VT. For example, the guest maybe running " "in big real mode\n" "which is not supported on less recent Intel processors." "\n\n"); } ret = -1; break; case KVM_EXIT_EXCEPTION: fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", run->ex.exception, run->ex.error_code); ret = -1; break; case KVM_EXIT_DEBUG: DPRINTF("kvm_exit_debug\n"); ret = kvm_handle_debug(&run->debug.arch); break; default: fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); ret = -1; break; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUX86State *env) { kvm_cpu_synchronize_state(env); return !(env->cr[0] & CR0_PE_MASK) || ((env->segs[R_CS].selector & 3) != 3); } void kvm_arch_init_irq_routing(KVMState *s) { if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { /* If kernel can't do irq routing, interrupt source * override 0->2 cannot be set up as required by HPET. * So we have to disable it. */ no_hpet = 1; } /* We know at this point that we're using the in-kernel * irqchip, so we can use irqfds, and on x86 we know * we can use msi via irqfd and GSI routing. */ kvm_irqfds_allowed = true; kvm_msi_via_irqfd_allowed = true; kvm_gsi_routing_allowed = true; } /* Classic KVM device assignment interface. Will remain x86 only. */ int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, uint32_t flags, uint32_t *dev_id) { struct kvm_assigned_pci_dev dev_data = { .segnr = dev_addr->domain, .busnr = dev_addr->bus, .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), .flags = flags, }; int ret; dev_data.assigned_dev_id = (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); if (ret < 0) { return ret; } *dev_id = dev_data.assigned_dev_id; return 0; } int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) { struct kvm_assigned_pci_dev dev_data = { .assigned_dev_id = dev_id, }; return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); } static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, uint32_t irq_type, uint32_t guest_irq) { struct kvm_assigned_irq assigned_irq = { .assigned_dev_id = dev_id, .guest_irq = guest_irq, .flags = irq_type, }; if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); } else { return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); } } int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, uint32_t guest_irq) { uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); } int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) { struct kvm_assigned_pci_dev dev_data = { .assigned_dev_id = dev_id, .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, }; return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); } static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, uint32_t type) { struct kvm_assigned_irq assigned_irq = { .assigned_dev_id = dev_id, .flags = type, }; return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); } int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) { return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); } int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) { return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | KVM_DEV_IRQ_GUEST_MSI, virq); } int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) { return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | KVM_DEV_IRQ_HOST_MSI); } bool kvm_device_msix_supported(KVMState *s) { /* The kernel lacks a corresponding KVM_CAP, so we probe by calling * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; } int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, uint32_t nr_vectors) { struct kvm_assigned_msix_nr msix_nr = { .assigned_dev_id = dev_id, .entry_nr = nr_vectors, }; return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); } int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, int virq) { struct kvm_assigned_msix_entry msix_entry = { .assigned_dev_id = dev_id, .gsi = virq, .entry = vector, }; return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); } int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) { return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | KVM_DEV_IRQ_GUEST_MSIX, 0); } int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) { return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | KVM_DEV_IRQ_HOST_MSIX); }