/* * i386 micro operations * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define ASM_SOFTMMU #include "exec.h" /* n must be a constant to be efficient */ static inline target_long lshift(target_long x, int n) { if (n >= 0) return x << n; else return x >> (-n); } /* we define the various pieces of code used by the JIT */ #define REG EAX #define REGNAME _EAX #include "opreg_template.h" #undef REG #undef REGNAME #define REG ECX #define REGNAME _ECX #include "opreg_template.h" #undef REG #undef REGNAME #define REG EDX #define REGNAME _EDX #include "opreg_template.h" #undef REG #undef REGNAME #define REG EBX #define REGNAME _EBX #include "opreg_template.h" #undef REG #undef REGNAME #define REG ESP #define REGNAME _ESP #include "opreg_template.h" #undef REG #undef REGNAME #define REG EBP #define REGNAME _EBP #include "opreg_template.h" #undef REG #undef REGNAME #define REG ESI #define REGNAME _ESI #include "opreg_template.h" #undef REG #undef REGNAME #define REG EDI #define REGNAME _EDI #include "opreg_template.h" #undef REG #undef REGNAME #ifdef TARGET_X86_64 #define REG (env->regs[8]) #define REGNAME _R8 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[9]) #define REGNAME _R9 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[10]) #define REGNAME _R10 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[11]) #define REGNAME _R11 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[12]) #define REGNAME _R12 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[13]) #define REGNAME _R13 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[14]) #define REGNAME _R14 #include "opreg_template.h" #undef REG #undef REGNAME #define REG (env->regs[15]) #define REGNAME _R15 #include "opreg_template.h" #undef REG #undef REGNAME #endif /* operations with flags */ /* update flags with T0 and T1 (add/sub case) */ void OPPROTO op_update2_cc(void) { CC_SRC = T1; CC_DST = T0; } /* update flags with T0 (logic operation case) */ void OPPROTO op_update1_cc(void) { CC_DST = T0; } void OPPROTO op_update_neg_cc(void) { CC_SRC = -T0; CC_DST = T0; } void OPPROTO op_cmpl_T0_T1_cc(void) { CC_SRC = T1; CC_DST = T0 - T1; } void OPPROTO op_update_inc_cc(void) { CC_SRC = cc_table[CC_OP].compute_c(); CC_DST = T0; } void OPPROTO op_testl_T0_T1_cc(void) { CC_DST = T0 & T1; } /* operations without flags */ void OPPROTO op_addl_T0_T1(void) { T0 += T1; } void OPPROTO op_orl_T0_T1(void) { T0 |= T1; } void OPPROTO op_andl_T0_T1(void) { T0 &= T1; } void OPPROTO op_subl_T0_T1(void) { T0 -= T1; } void OPPROTO op_xorl_T0_T1(void) { T0 ^= T1; } void OPPROTO op_negl_T0(void) { T0 = -T0; } void OPPROTO op_incl_T0(void) { T0++; } void OPPROTO op_decl_T0(void) { T0--; } void OPPROTO op_notl_T0(void) { T0 = ~T0; } void OPPROTO op_bswapl_T0(void) { T0 = bswap32(T0); } #ifdef TARGET_X86_64 void OPPROTO op_bswapq_T0(void) { T0 = bswap64(T0); } #endif /* multiply/divide */ /* XXX: add eflags optimizations */ /* XXX: add non P4 style flags */ void OPPROTO op_mulb_AL_T0(void) { unsigned int res; res = (uint8_t)EAX * (uint8_t)T0; EAX = (EAX & ~0xffff) | res; CC_DST = res; CC_SRC = (res & 0xff00); } void OPPROTO op_imulb_AL_T0(void) { int res; res = (int8_t)EAX * (int8_t)T0; EAX = (EAX & ~0xffff) | (res & 0xffff); CC_DST = res; CC_SRC = (res != (int8_t)res); } void OPPROTO op_mulw_AX_T0(void) { unsigned int res; res = (uint16_t)EAX * (uint16_t)T0; EAX = (EAX & ~0xffff) | (res & 0xffff); EDX = (EDX & ~0xffff) | ((res >> 16) & 0xffff); CC_DST = res; CC_SRC = res >> 16; } void OPPROTO op_imulw_AX_T0(void) { int res; res = (int16_t)EAX * (int16_t)T0; EAX = (EAX & ~0xffff) | (res & 0xffff); EDX = (EDX & ~0xffff) | ((res >> 16) & 0xffff); CC_DST = res; CC_SRC = (res != (int16_t)res); } void OPPROTO op_mull_EAX_T0(void) { uint64_t res; res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0); EAX = (uint32_t)res; EDX = (uint32_t)(res >> 32); CC_DST = (uint32_t)res; CC_SRC = (uint32_t)(res >> 32); } void OPPROTO op_imull_EAX_T0(void) { int64_t res; res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0); EAX = res; EDX = res >> 32; CC_DST = res; CC_SRC = (res != (int32_t)res); } void OPPROTO op_imulw_T0_T1(void) { int res; res = (int16_t)T0 * (int16_t)T1; T0 = res; CC_DST = res; CC_SRC = (res != (int16_t)res); } void OPPROTO op_imull_T0_T1(void) { int64_t res; res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); T0 = res; CC_DST = res; CC_SRC = (res != (int32_t)res); } #ifdef TARGET_X86_64 void OPPROTO op_mulq_EAX_T0(void) { helper_mulq_EAX_T0(); } void OPPROTO op_imulq_EAX_T0(void) { helper_imulq_EAX_T0(); } void OPPROTO op_imulq_T0_T1(void) { helper_imulq_T0_T1(); } #endif /* division, flags are undefined */ /* XXX: add exceptions for overflow */ void OPPROTO op_divb_AL_T0(void) { unsigned int num, den, q, r; num = (EAX & 0xffff); den = (T0 & 0xff); if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den) & 0xff; r = (num % den) & 0xff; EAX = (EAX & ~0xffff) | (r << 8) | q; } void OPPROTO op_idivb_AL_T0(void) { int num, den, q, r; num = (int16_t)EAX; den = (int8_t)T0; if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den) & 0xff; r = (num % den) & 0xff; EAX = (EAX & ~0xffff) | (r << 8) | q; } void OPPROTO op_divw_AX_T0(void) { unsigned int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (T0 & 0xffff); if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den) & 0xffff; r = (num % den) & 0xffff; EAX = (EAX & ~0xffff) | q; EDX = (EDX & ~0xffff) | r; } void OPPROTO op_idivw_AX_T0(void) { int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (int16_t)T0; if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den) & 0xffff; r = (num % den) & 0xffff; EAX = (EAX & ~0xffff) | q; EDX = (EDX & ~0xffff) | r; } void OPPROTO op_divl_EAX_T0(void) { helper_divl_EAX_T0(); } void OPPROTO op_idivl_EAX_T0(void) { helper_idivl_EAX_T0(); } #ifdef TARGET_X86_64 void OPPROTO op_divq_EAX_T0(void) { helper_divq_EAX_T0(); } void OPPROTO op_idivq_EAX_T0(void) { helper_idivq_EAX_T0(); } #endif /* constant load & misc op */ /* XXX: consistent names */ void OPPROTO op_movl_T0_imu(void) { T0 = (uint32_t)PARAM1; } void OPPROTO op_movl_T0_im(void) { T0 = (int32_t)PARAM1; } void OPPROTO op_addl_T0_im(void) { T0 += PARAM1; } void OPPROTO op_andl_T0_ffff(void) { T0 = T0 & 0xffff; } void OPPROTO op_andl_T0_im(void) { T0 = T0 & PARAM1; } void OPPROTO op_movl_T0_T1(void) { T0 = T1; } void OPPROTO op_movl_T1_imu(void) { T1 = (uint32_t)PARAM1; } void OPPROTO op_movl_T1_im(void) { T1 = (int32_t)PARAM1; } void OPPROTO op_addl_T1_im(void) { T1 += PARAM1; } void OPPROTO op_movl_T1_A0(void) { T1 = A0; } void OPPROTO op_movl_A0_im(void) { A0 = (uint32_t)PARAM1; } void OPPROTO op_addl_A0_im(void) { A0 = (uint32_t)(A0 + PARAM1); } void OPPROTO op_movl_A0_seg(void) { A0 = (uint32_t)*(target_ulong *)((char *)env + PARAM1); } void OPPROTO op_addl_A0_seg(void) { A0 = (uint32_t)(A0 + *(target_ulong *)((char *)env + PARAM1)); } void OPPROTO op_addl_A0_AL(void) { A0 = (uint32_t)(A0 + (EAX & 0xff)); } #ifdef WORDS_BIGENDIAN typedef union UREG64 { struct { uint16_t v3, v2, v1, v0; } w; struct { uint32_t v1, v0; } l; uint64_t q; } UREG64; #else typedef union UREG64 { struct { uint16_t v0, v1, v2, v3; } w; struct { uint32_t v0, v1; } l; uint64_t q; } UREG64; #endif #ifdef TARGET_X86_64 #define PARAMQ1 \ ({\ UREG64 __p;\ __p.l.v1 = PARAM1;\ __p.l.v0 = PARAM2;\ __p.q;\ }) void OPPROTO op_movq_T0_im64(void) { T0 = PARAMQ1; } void OPPROTO op_movq_T1_im64(void) { T1 = PARAMQ1; } void OPPROTO op_movq_A0_im(void) { A0 = (int32_t)PARAM1; } void OPPROTO op_movq_A0_im64(void) { A0 = PARAMQ1; } void OPPROTO op_addq_A0_im(void) { A0 = (A0 + (int32_t)PARAM1); } void OPPROTO op_addq_A0_im64(void) { A0 = (A0 + PARAMQ1); } void OPPROTO op_movq_A0_seg(void) { A0 = *(target_ulong *)((char *)env + PARAM1); } void OPPROTO op_addq_A0_seg(void) { A0 += *(target_ulong *)((char *)env + PARAM1); } void OPPROTO op_addq_A0_AL(void) { A0 = (A0 + (EAX & 0xff)); } #endif void OPPROTO op_andl_A0_ffff(void) { A0 = A0 & 0xffff; } /* memory access */ #define MEMSUFFIX _raw #include "ops_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _kernel #include "ops_mem.h" #define MEMSUFFIX _user #include "ops_mem.h" #endif /* indirect jump */ void OPPROTO op_jmp_T0(void) { EIP = T0; } void OPPROTO op_movl_eip_im(void) { EIP = (uint32_t)PARAM1; } #ifdef TARGET_X86_64 void OPPROTO op_movq_eip_im(void) { EIP = (int32_t)PARAM1; } void OPPROTO op_movq_eip_im64(void) { EIP = PARAMQ1; } #endif void OPPROTO op_hlt(void) { env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */ env->exception_index = EXCP_HLT; cpu_loop_exit(); } void OPPROTO op_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } void OPPROTO op_raise_interrupt(void) { int intno, next_eip_addend; intno = PARAM1; next_eip_addend = PARAM2; raise_interrupt(intno, 1, 0, next_eip_addend); } void OPPROTO op_raise_exception(void) { int exception_index; exception_index = PARAM1; raise_exception(exception_index); } void OPPROTO op_into(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & CC_O) { raise_interrupt(EXCP04_INTO, 1, 0, PARAM1); } FORCE_RET(); } void OPPROTO op_cli(void) { env->eflags &= ~IF_MASK; } void OPPROTO op_sti(void) { env->eflags |= IF_MASK; } void OPPROTO op_set_inhibit_irq(void) { env->hflags |= HF_INHIBIT_IRQ_MASK; } void OPPROTO op_reset_inhibit_irq(void) { env->hflags &= ~HF_INHIBIT_IRQ_MASK; } #if 0 /* vm86plus instructions */ void OPPROTO op_cli_vm(void) { env->eflags &= ~VIF_MASK; } void OPPROTO op_sti_vm(void) { env->eflags |= VIF_MASK; if (env->eflags & VIP_MASK) { EIP = PARAM1; raise_exception(EXCP0D_GPF); } FORCE_RET(); } #endif void OPPROTO op_boundw(void) { int low, high, v; low = ldsw(A0); high = ldsw(A0 + 2); v = (int16_t)T0; if (v < low || v > high) { raise_exception(EXCP05_BOUND); } FORCE_RET(); } void OPPROTO op_boundl(void) { int low, high, v; low = ldl(A0); high = ldl(A0 + 4); v = T0; if (v < low || v > high) { raise_exception(EXCP05_BOUND); } FORCE_RET(); } void OPPROTO op_cmpxchg8b(void) { helper_cmpxchg8b(); } void OPPROTO op_movl_T0_0(void) { T0 = 0; } void OPPROTO op_exit_tb(void) { EXIT_TB(); } /* multiple size ops */ #define ldul ldl #define SHIFT 0 #include "ops_template.h" #undef SHIFT #define SHIFT 1 #include "ops_template.h" #undef SHIFT #define SHIFT 2 #include "ops_template.h" #undef SHIFT #ifdef TARGET_X86_64 #define SHIFT 3 #include "ops_template.h" #undef SHIFT #endif /* sign extend */ void OPPROTO op_movsbl_T0_T0(void) { T0 = (int8_t)T0; } void OPPROTO op_movzbl_T0_T0(void) { T0 = (uint8_t)T0; } void OPPROTO op_movswl_T0_T0(void) { T0 = (int16_t)T0; } void OPPROTO op_movzwl_T0_T0(void) { T0 = (uint16_t)T0; } void OPPROTO op_movswl_EAX_AX(void) { EAX = (int16_t)EAX; } #ifdef TARGET_X86_64 void OPPROTO op_movslq_T0_T0(void) { T0 = (int32_t)T0; } void OPPROTO op_movslq_RAX_EAX(void) { EAX = (int32_t)EAX; } #endif void OPPROTO op_movsbw_AX_AL(void) { EAX = (EAX & ~0xffff) | ((int8_t)EAX & 0xffff); } void OPPROTO op_movslq_EDX_EAX(void) { EDX = (int32_t)EAX >> 31; } void OPPROTO op_movswl_DX_AX(void) { EDX = (EDX & ~0xffff) | (((int16_t)EAX >> 15) & 0xffff); } #ifdef TARGET_X86_64 void OPPROTO op_movsqo_RDX_RAX(void) { EDX = (int64_t)EAX >> 63; } #endif /* string ops helpers */ void OPPROTO op_addl_ESI_T0(void) { ESI = (uint32_t)(ESI + T0); } void OPPROTO op_addw_ESI_T0(void) { ESI = (ESI & ~0xffff) | ((ESI + T0) & 0xffff); } void OPPROTO op_addl_EDI_T0(void) { EDI = (uint32_t)(EDI + T0); } void OPPROTO op_addw_EDI_T0(void) { EDI = (EDI & ~0xffff) | ((EDI + T0) & 0xffff); } void OPPROTO op_decl_ECX(void) { ECX = (uint32_t)(ECX - 1); } void OPPROTO op_decw_ECX(void) { ECX = (ECX & ~0xffff) | ((ECX - 1) & 0xffff); } #ifdef TARGET_X86_64 void OPPROTO op_addq_ESI_T0(void) { ESI = (ESI + T0); } void OPPROTO op_addq_EDI_T0(void) { EDI = (EDI + T0); } void OPPROTO op_decq_ECX(void) { ECX--; } #endif /* push/pop utils */ void op_addl_A0_SS(void) { A0 += (long)env->segs[R_SS].base; } void op_subl_A0_2(void) { A0 = (uint32_t)(A0 - 2); } void op_subl_A0_4(void) { A0 = (uint32_t)(A0 - 4); } void op_addl_ESP_4(void) { ESP = (uint32_t)(ESP + 4); } void op_addl_ESP_2(void) { ESP = (uint32_t)(ESP + 2); } void op_addw_ESP_4(void) { ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff); } void op_addw_ESP_2(void) { ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff); } void op_addl_ESP_im(void) { ESP = (uint32_t)(ESP + PARAM1); } void op_addw_ESP_im(void) { ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff); } #ifdef TARGET_X86_64 void op_subq_A0_8(void) { A0 -= 8; } void op_addq_ESP_8(void) { ESP += 8; } void op_addq_ESP_im(void) { ESP += PARAM1; } #endif void OPPROTO op_rdtsc(void) { helper_rdtsc(); } void OPPROTO op_cpuid(void) { helper_cpuid(); } void OPPROTO op_enter_level(void) { helper_enter_level(PARAM1, PARAM2); } void OPPROTO op_sysenter(void) { helper_sysenter(); } void OPPROTO op_sysexit(void) { helper_sysexit(); } #ifdef TARGET_X86_64 void OPPROTO op_syscall(void) { helper_syscall(PARAM1); } void OPPROTO op_sysret(void) { helper_sysret(PARAM1); } #endif void OPPROTO op_rdmsr(void) { helper_rdmsr(); } void OPPROTO op_wrmsr(void) { helper_wrmsr(); } /* bcd */ /* XXX: exception */ void OPPROTO op_aam(void) { int base = PARAM1; int al, ah; al = EAX & 0xff; ah = al / base; al = al % base; EAX = (EAX & ~0xffff) | al | (ah << 8); CC_DST = al; } void OPPROTO op_aad(void) { int base = PARAM1; int al, ah; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; al = ((ah * base) + al) & 0xff; EAX = (EAX & ~0xffff) | al; CC_DST = al; } void OPPROTO op_aaa(void) { int icarry; int al, ah, af; int eflags; eflags = cc_table[CC_OP].compute_all(); af = eflags & CC_A; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; icarry = (al > 0xf9); if (((al & 0x0f) > 9 ) || af) { al = (al + 6) & 0x0f; ah = (ah + 1 + icarry) & 0xff; eflags |= CC_C | CC_A; } else { eflags &= ~(CC_C | CC_A); al &= 0x0f; } EAX = (EAX & ~0xffff) | al | (ah << 8); CC_SRC = eflags; } void OPPROTO op_aas(void) { int icarry; int al, ah, af; int eflags; eflags = cc_table[CC_OP].compute_all(); af = eflags & CC_A; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; icarry = (al < 6); if (((al & 0x0f) > 9 ) || af) { al = (al - 6) & 0x0f; ah = (ah - 1 - icarry) & 0xff; eflags |= CC_C | CC_A; } else { eflags &= ~(CC_C | CC_A); al &= 0x0f; } EAX = (EAX & ~0xffff) | al | (ah << 8); CC_SRC = eflags; } void OPPROTO op_daa(void) { int al, af, cf; int eflags; eflags = cc_table[CC_OP].compute_all(); cf = eflags & CC_C; af = eflags & CC_A; al = EAX & 0xff; eflags = 0; if (((al & 0x0f) > 9 ) || af) { al = (al + 6) & 0xff; eflags |= CC_A; } if ((al > 0x9f) || cf) { al = (al + 0x60) & 0xff; eflags |= CC_C; } EAX = (EAX & ~0xff) | al; /* well, speed is not an issue here, so we compute the flags by hand */ eflags |= (al == 0) << 6; /* zf */ eflags |= parity_table[al]; /* pf */ eflags |= (al & 0x80); /* sf */ CC_SRC = eflags; } void OPPROTO op_das(void) { int al, al1, af, cf; int eflags; eflags = cc_table[CC_OP].compute_all(); cf = eflags & CC_C; af = eflags & CC_A; al = EAX & 0xff; eflags = 0; al1 = al; if (((al & 0x0f) > 9 ) || af) { eflags |= CC_A; if (al < 6 || cf) eflags |= CC_C; al = (al - 6) & 0xff; } if ((al1 > 0x99) || cf) { al = (al - 0x60) & 0xff; eflags |= CC_C; } EAX = (EAX & ~0xff) | al; /* well, speed is not an issue here, so we compute the flags by hand */ eflags |= (al == 0) << 6; /* zf */ eflags |= parity_table[al]; /* pf */ eflags |= (al & 0x80); /* sf */ CC_SRC = eflags; } /* segment handling */ /* never use it with R_CS */ void OPPROTO op_movl_seg_T0(void) { load_seg(PARAM1, T0); } /* faster VM86 version */ void OPPROTO op_movl_seg_T0_vm(void) { int selector; SegmentCache *sc; selector = T0 & 0xffff; /* env->segs[] access */ sc = (SegmentCache *)((char *)env + PARAM1); sc->selector = selector; sc->base = (selector << 4); } void OPPROTO op_movl_T0_seg(void) { T0 = env->segs[PARAM1].selector; } void OPPROTO op_lsl(void) { helper_lsl(); } void OPPROTO op_lar(void) { helper_lar(); } void OPPROTO op_verr(void) { helper_verr(); } void OPPROTO op_verw(void) { helper_verw(); } void OPPROTO op_arpl(void) { if ((T0 & 3) < (T1 & 3)) { /* XXX: emulate bug or 0xff3f0000 oring as in bochs ? */ T0 = (T0 & ~3) | (T1 & 3); T1 = CC_Z; } else { T1 = 0; } FORCE_RET(); } void OPPROTO op_arpl_update(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); CC_SRC = (eflags & ~CC_Z) | T1; } /* T0: segment, T1:eip */ void OPPROTO op_ljmp_protected_T0_T1(void) { helper_ljmp_protected_T0_T1(PARAM1); } void OPPROTO op_lcall_real_T0_T1(void) { helper_lcall_real_T0_T1(PARAM1, PARAM2); } void OPPROTO op_lcall_protected_T0_T1(void) { helper_lcall_protected_T0_T1(PARAM1, PARAM2); } void OPPROTO op_iret_real(void) { helper_iret_real(PARAM1); } void OPPROTO op_iret_protected(void) { helper_iret_protected(PARAM1, PARAM2); } void OPPROTO op_lret_protected(void) { helper_lret_protected(PARAM1, PARAM2); } void OPPROTO op_lldt_T0(void) { helper_lldt_T0(); } void OPPROTO op_ltr_T0(void) { helper_ltr_T0(); } /* CR registers access */ void OPPROTO op_movl_crN_T0(void) { helper_movl_crN_T0(PARAM1); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_movtl_T0_cr8(void) { T0 = cpu_get_apic_tpr(env); } #endif /* DR registers access */ void OPPROTO op_movl_drN_T0(void) { helper_movl_drN_T0(PARAM1); } void OPPROTO op_lmsw_T0(void) { /* only 4 lower bits of CR0 are modified. PE cannot be set to zero if already set to one. */ T0 = (env->cr[0] & ~0xe) | (T0 & 0xf); helper_movl_crN_T0(0); } void OPPROTO op_invlpg_A0(void) { helper_invlpg(A0); } void OPPROTO op_movl_T0_env(void) { T0 = *(uint32_t *)((char *)env + PARAM1); } void OPPROTO op_movl_env_T0(void) { *(uint32_t *)((char *)env + PARAM1) = T0; } void OPPROTO op_movl_env_T1(void) { *(uint32_t *)((char *)env + PARAM1) = T1; } void OPPROTO op_movtl_T0_env(void) { T0 = *(target_ulong *)((char *)env + PARAM1); } void OPPROTO op_movtl_env_T0(void) { *(target_ulong *)((char *)env + PARAM1) = T0; } void OPPROTO op_movtl_T1_env(void) { T1 = *(target_ulong *)((char *)env + PARAM1); } void OPPROTO op_movtl_env_T1(void) { *(target_ulong *)((char *)env + PARAM1) = T1; } void OPPROTO op_clts(void) { env->cr[0] &= ~CR0_TS_MASK; env->hflags &= ~HF_TS_MASK; } /* flags handling */ void OPPROTO op_goto_tb0(void) { GOTO_TB(op_goto_tb0, PARAM1, 0); } void OPPROTO op_goto_tb1(void) { GOTO_TB(op_goto_tb1, PARAM1, 1); } void OPPROTO op_jmp_label(void) { GOTO_LABEL_PARAM(1); } void OPPROTO op_jnz_T0_label(void) { if (T0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_jz_T0_label(void) { if (!T0) GOTO_LABEL_PARAM(1); FORCE_RET(); } /* slow set cases (compute x86 flags) */ void OPPROTO op_seto_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 11) & 1; } void OPPROTO op_setb_T0_cc(void) { T0 = cc_table[CC_OP].compute_c(); } void OPPROTO op_setz_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 6) & 1; } void OPPROTO op_setbe_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags & (CC_Z | CC_C)) != 0; } void OPPROTO op_sets_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 7) & 1; } void OPPROTO op_setp_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 2) & 1; } void OPPROTO op_setl_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1; } void OPPROTO op_setle_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0; } void OPPROTO op_xor_T0_1(void) { T0 ^= 1; } void OPPROTO op_set_cc_op(void) { CC_OP = PARAM1; } /* XXX: clear VIF/VIP in all ops ? */ void OPPROTO op_movl_eflags_T0(void) { load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK)); } void OPPROTO op_movw_eflags_T0(void) { load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK) & 0xffff); } void OPPROTO op_movl_eflags_T0_io(void) { load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK)); } void OPPROTO op_movw_eflags_T0_io(void) { load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK) & 0xffff); } void OPPROTO op_movl_eflags_T0_cpl0(void) { load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK)); } void OPPROTO op_movw_eflags_T0_cpl0(void) { load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK) & 0xffff); } #if 0 /* vm86plus version */ void OPPROTO op_movw_eflags_T0_vm(void) { int eflags; eflags = T0; CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((eflags >> 10) & 1)); /* we also update some system flags as in user mode */ env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) | (eflags & FL_UPDATE_MASK16); if (eflags & IF_MASK) { env->eflags |= VIF_MASK; if (env->eflags & VIP_MASK) { EIP = PARAM1; raise_exception(EXCP0D_GPF); } } FORCE_RET(); } void OPPROTO op_movl_eflags_T0_vm(void) { int eflags; eflags = T0; CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((eflags >> 10) & 1)); /* we also update some system flags as in user mode */ env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) | (eflags & FL_UPDATE_MASK32); if (eflags & IF_MASK) { env->eflags |= VIF_MASK; if (env->eflags & VIP_MASK) { EIP = PARAM1; raise_exception(EXCP0D_GPF); } } FORCE_RET(); } #endif /* XXX: compute only O flag */ void OPPROTO op_movb_eflags_T0(void) { int of; of = cc_table[CC_OP].compute_all() & CC_O; CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of; } void OPPROTO op_movl_T0_eflags(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags |= (DF & DF_MASK); eflags |= env->eflags & ~(VM_MASK | RF_MASK); T0 = eflags; } /* vm86plus version */ #if 0 void OPPROTO op_movl_T0_eflags_vm(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags |= (DF & DF_MASK); eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK); if (env->eflags & VIF_MASK) eflags |= IF_MASK; T0 = eflags; } #endif void OPPROTO op_cld(void) { DF = 1; } void OPPROTO op_std(void) { DF = -1; } void OPPROTO op_clc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags &= ~CC_C; CC_SRC = eflags; } void OPPROTO op_stc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags |= CC_C; CC_SRC = eflags; } void OPPROTO op_cmc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags ^= CC_C; CC_SRC = eflags; } void OPPROTO op_salc(void) { int cf; cf = cc_table[CC_OP].compute_c(); EAX = (EAX & ~0xff) | ((-cf) & 0xff); } static int compute_all_eflags(void) { return CC_SRC; } static int compute_c_eflags(void) { return CC_SRC & CC_C; } CCTable cc_table[CC_OP_NB] = { [CC_OP_DYNAMIC] = { /* should never happen */ }, [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags }, [CC_OP_MULB] = { compute_all_mulb, compute_c_mull }, [CC_OP_MULW] = { compute_all_mulw, compute_c_mull }, [CC_OP_MULL] = { compute_all_mull, compute_c_mull }, [CC_OP_ADDB] = { compute_all_addb, compute_c_addb }, [CC_OP_ADDW] = { compute_all_addw, compute_c_addw }, [CC_OP_ADDL] = { compute_all_addl, compute_c_addl }, [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb }, [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw }, [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl }, [CC_OP_SUBB] = { compute_all_subb, compute_c_subb }, [CC_OP_SUBW] = { compute_all_subw, compute_c_subw }, [CC_OP_SUBL] = { compute_all_subl, compute_c_subl }, [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb }, [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw }, [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl }, [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb }, [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw }, [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl }, [CC_OP_INCB] = { compute_all_incb, compute_c_incl }, [CC_OP_INCW] = { compute_all_incw, compute_c_incl }, [CC_OP_INCL] = { compute_all_incl, compute_c_incl }, [CC_OP_DECB] = { compute_all_decb, compute_c_incl }, [CC_OP_DECW] = { compute_all_decw, compute_c_incl }, [CC_OP_DECL] = { compute_all_decl, compute_c_incl }, [CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb }, [CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw }, [CC_OP_SHLL] = { compute_all_shll, compute_c_shll }, [CC_OP_SARB] = { compute_all_sarb, compute_c_sarl }, [CC_OP_SARW] = { compute_all_sarw, compute_c_sarl }, [CC_OP_SARL] = { compute_all_sarl, compute_c_sarl }, #ifdef TARGET_X86_64 [CC_OP_MULQ] = { compute_all_mulq, compute_c_mull }, [CC_OP_ADDQ] = { compute_all_addq, compute_c_addq }, [CC_OP_ADCQ] = { compute_all_adcq, compute_c_adcq }, [CC_OP_SUBQ] = { compute_all_subq, compute_c_subq }, [CC_OP_SBBQ] = { compute_all_sbbq, compute_c_sbbq }, [CC_OP_LOGICQ] = { compute_all_logicq, compute_c_logicq }, [CC_OP_INCQ] = { compute_all_incq, compute_c_incl }, [CC_OP_DECQ] = { compute_all_decq, compute_c_incl }, [CC_OP_SHLQ] = { compute_all_shlq, compute_c_shlq }, [CC_OP_SARQ] = { compute_all_sarq, compute_c_sarl }, #endif }; /* floating point support. Some of the code for complicated x87 functions comes from the LGPL'ed x86 emulator found in the Willows TWIN windows emulator. */ #if defined(__powerpc__) extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble); /* correct (but slow) PowerPC rint() (glibc version is incorrect) */ double qemu_rint(double x) { double y = 4503599627370496.0; if (fabs(x) >= y) return x; if (x < 0) y = -y; y = (x + y) - y; if (y == 0.0) y = copysign(y, x); return y; } #define rint qemu_rint #endif /* fp load FT0 */ void OPPROTO op_flds_FT0_A0(void) { #ifdef USE_FP_CONVERT FP_CONVERT.i32 = ldl(A0); FT0 = FP_CONVERT.f; #else FT0 = ldfl(A0); #endif } void OPPROTO op_fldl_FT0_A0(void) { #ifdef USE_FP_CONVERT FP_CONVERT.i64 = ldq(A0); FT0 = FP_CONVERT.d; #else FT0 = ldfq(A0); #endif } /* helpers are needed to avoid static constant reference. XXX: find a better way */ #ifdef USE_INT_TO_FLOAT_HELPERS void helper_fild_FT0_A0(void) { FT0 = (CPU86_LDouble)ldsw(A0); } void helper_fildl_FT0_A0(void) { FT0 = (CPU86_LDouble)((int32_t)ldl(A0)); } void helper_fildll_FT0_A0(void) { FT0 = (CPU86_LDouble)((int64_t)ldq(A0)); } void OPPROTO op_fild_FT0_A0(void) { helper_fild_FT0_A0(); } void OPPROTO op_fildl_FT0_A0(void) { helper_fildl_FT0_A0(); } void OPPROTO op_fildll_FT0_A0(void) { helper_fildll_FT0_A0(); } #else void OPPROTO op_fild_FT0_A0(void) { #ifdef USE_FP_CONVERT FP_CONVERT.i32 = ldsw(A0); FT0 = (CPU86_LDouble)FP_CONVERT.i32; #else FT0 = (CPU86_LDouble)ldsw(A0); #endif } void OPPROTO op_fildl_FT0_A0(void) { #ifdef USE_FP_CONVERT FP_CONVERT.i32 = (int32_t) ldl(A0); FT0 = (CPU86_LDouble)FP_CONVERT.i32; #else FT0 = (CPU86_LDouble)((int32_t)ldl(A0)); #endif } void OPPROTO op_fildll_FT0_A0(void) { #ifdef USE_FP_CONVERT FP_CONVERT.i64 = (int64_t) ldq(A0); FT0 = (CPU86_LDouble)FP_CONVERT.i64; #else FT0 = (CPU86_LDouble)((int64_t)ldq(A0)); #endif } #endif /* fp load ST0 */ void OPPROTO op_flds_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; #ifdef USE_FP_CONVERT FP_CONVERT.i32 = ldl(A0); env->fpregs[new_fpstt].d = FP_CONVERT.f; #else env->fpregs[new_fpstt].d = ldfl(A0); #endif env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void OPPROTO op_fldl_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; #ifdef USE_FP_CONVERT FP_CONVERT.i64 = ldq(A0); env->fpregs[new_fpstt].d = FP_CONVERT.d; #else env->fpregs[new_fpstt].d = ldfq(A0); #endif env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void OPPROTO op_fldt_ST0_A0(void) { helper_fldt_ST0_A0(); } /* helpers are needed to avoid static constant reference. XXX: find a better way */ #ifdef USE_INT_TO_FLOAT_HELPERS void helper_fild_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = (CPU86_LDouble)ldsw(A0); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fildl_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = (CPU86_LDouble)((int32_t)ldl(A0)); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fildll_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = (CPU86_LDouble)((int64_t)ldq(A0)); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void OPPROTO op_fild_ST0_A0(void) { helper_fild_ST0_A0(); } void OPPROTO op_fildl_ST0_A0(void) { helper_fildl_ST0_A0(); } void OPPROTO op_fildll_ST0_A0(void) { helper_fildll_ST0_A0(); } #else void OPPROTO op_fild_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; #ifdef USE_FP_CONVERT FP_CONVERT.i32 = ldsw(A0); env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i32; #else env->fpregs[new_fpstt].d = (CPU86_LDouble)ldsw(A0); #endif env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void OPPROTO op_fildl_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; #ifdef USE_FP_CONVERT FP_CONVERT.i32 = (int32_t) ldl(A0); env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i32; #else env->fpregs[new_fpstt].d = (CPU86_LDouble)((int32_t)ldl(A0)); #endif env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void OPPROTO op_fildll_ST0_A0(void) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; #ifdef USE_FP_CONVERT FP_CONVERT.i64 = (int64_t) ldq(A0); env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i64; #else env->fpregs[new_fpstt].d = (CPU86_LDouble)((int64_t)ldq(A0)); #endif env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } #endif /* fp store */ void OPPROTO op_fsts_ST0_A0(void) { #ifdef USE_FP_CONVERT FP_CONVERT.f = (float)ST0; stfl(A0, FP_CONVERT.f); #else stfl(A0, (float)ST0); #endif } void OPPROTO op_fstl_ST0_A0(void) { stfq(A0, (double)ST0); } void OPPROTO op_fstt_ST0_A0(void) { helper_fstt_ST0_A0(); } void OPPROTO op_fist_ST0_A0(void) { #if defined(__sparc__) && !defined(__sparc_v9__) register CPU86_LDouble d asm("o0"); #else CPU86_LDouble d; #endif int val; d = ST0; val = lrint(d); if (val != (int16_t)val) val = -32768; stw(A0, val); } void OPPROTO op_fistl_ST0_A0(void) { #if defined(__sparc__) && !defined(__sparc_v9__) register CPU86_LDouble d asm("o0"); #else CPU86_LDouble d; #endif int val; d = ST0; val = lrint(d); stl(A0, val); } void OPPROTO op_fistll_ST0_A0(void) { #if defined(__sparc__) && !defined(__sparc_v9__) register CPU86_LDouble d asm("o0"); #else CPU86_LDouble d; #endif int64_t val; d = ST0; val = llrint(d); stq(A0, val); } void OPPROTO op_fbld_ST0_A0(void) { helper_fbld_ST0_A0(); } void OPPROTO op_fbst_ST0_A0(void) { helper_fbst_ST0_A0(); } /* FPU move */ void OPPROTO op_fpush(void) { fpush(); } void OPPROTO op_fpop(void) { fpop(); } void OPPROTO op_fdecstp(void) { env->fpstt = (env->fpstt - 1) & 7; env->fpus &= (~0x4700); } void OPPROTO op_fincstp(void) { env->fpstt = (env->fpstt + 1) & 7; env->fpus &= (~0x4700); } void OPPROTO op_ffree_STN(void) { env->fptags[(env->fpstt + PARAM1) & 7] = 1; } void OPPROTO op_fmov_ST0_FT0(void) { ST0 = FT0; } void OPPROTO op_fmov_FT0_STN(void) { FT0 = ST(PARAM1); } void OPPROTO op_fmov_ST0_STN(void) { ST0 = ST(PARAM1); } void OPPROTO op_fmov_STN_ST0(void) { ST(PARAM1) = ST0; } void OPPROTO op_fxchg_ST0_STN(void) { CPU86_LDouble tmp; tmp = ST(PARAM1); ST(PARAM1) = ST0; ST0 = tmp; } /* FPU operations */ /* XXX: handle nans */ void OPPROTO op_fcom_ST0_FT0(void) { env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */ if (ST0 < FT0) env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */ else if (ST0 == FT0) env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */ FORCE_RET(); } /* XXX: handle nans */ void OPPROTO op_fucom_ST0_FT0(void) { env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */ if (ST0 < FT0) env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */ else if (ST0 == FT0) env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */ FORCE_RET(); } /* XXX: handle nans */ void OPPROTO op_fcomi_ST0_FT0(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags &= ~(CC_Z | CC_P | CC_C); if (ST0 < FT0) eflags |= CC_C; else if (ST0 == FT0) eflags |= CC_Z; CC_SRC = eflags; FORCE_RET(); } /* XXX: handle nans */ void OPPROTO op_fucomi_ST0_FT0(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags &= ~(CC_Z | CC_P | CC_C); if (ST0 < FT0) eflags |= CC_C; else if (ST0 == FT0) eflags |= CC_Z; CC_SRC = eflags; FORCE_RET(); } void OPPROTO op_fcmov_ST0_STN_T0(void) { if (T0) { ST0 = ST(PARAM1); } FORCE_RET(); } void OPPROTO op_fadd_ST0_FT0(void) { ST0 += FT0; } void OPPROTO op_fmul_ST0_FT0(void) { ST0 *= FT0; } void OPPROTO op_fsub_ST0_FT0(void) { ST0 -= FT0; } void OPPROTO op_fsubr_ST0_FT0(void) { ST0 = FT0 - ST0; } void OPPROTO op_fdiv_ST0_FT0(void) { ST0 = helper_fdiv(ST0, FT0); } void OPPROTO op_fdivr_ST0_FT0(void) { ST0 = helper_fdiv(FT0, ST0); } /* fp operations between STN and ST0 */ void OPPROTO op_fadd_STN_ST0(void) { ST(PARAM1) += ST0; } void OPPROTO op_fmul_STN_ST0(void) { ST(PARAM1) *= ST0; } void OPPROTO op_fsub_STN_ST0(void) { ST(PARAM1) -= ST0; } void OPPROTO op_fsubr_STN_ST0(void) { CPU86_LDouble *p; p = &ST(PARAM1); *p = ST0 - *p; } void OPPROTO op_fdiv_STN_ST0(void) { CPU86_LDouble *p; p = &ST(PARAM1); *p = helper_fdiv(*p, ST0); } void OPPROTO op_fdivr_STN_ST0(void) { CPU86_LDouble *p; p = &ST(PARAM1); *p = helper_fdiv(ST0, *p); } /* misc FPU operations */ void OPPROTO op_fchs_ST0(void) { ST0 = -ST0; } void OPPROTO op_fabs_ST0(void) { ST0 = fabs(ST0); } void OPPROTO op_fxam_ST0(void) { helper_fxam_ST0(); } void OPPROTO op_fld1_ST0(void) { ST0 = f15rk[1]; } void OPPROTO op_fldl2t_ST0(void) { ST0 = f15rk[6]; } void OPPROTO op_fldl2e_ST0(void) { ST0 = f15rk[5]; } void OPPROTO op_fldpi_ST0(void) { ST0 = f15rk[2]; } void OPPROTO op_fldlg2_ST0(void) { ST0 = f15rk[3]; } void OPPROTO op_fldln2_ST0(void) { ST0 = f15rk[4]; } void OPPROTO op_fldz_ST0(void) { ST0 = f15rk[0]; } void OPPROTO op_fldz_FT0(void) { FT0 = f15rk[0]; } /* associated heplers to reduce generated code length and to simplify relocation (FP constants are usually stored in .rodata section) */ void OPPROTO op_f2xm1(void) { helper_f2xm1(); } void OPPROTO op_fyl2x(void) { helper_fyl2x(); } void OPPROTO op_fptan(void) { helper_fptan(); } void OPPROTO op_fpatan(void) { helper_fpatan(); } void OPPROTO op_fxtract(void) { helper_fxtract(); } void OPPROTO op_fprem1(void) { helper_fprem1(); } void OPPROTO op_fprem(void) { helper_fprem(); } void OPPROTO op_fyl2xp1(void) { helper_fyl2xp1(); } void OPPROTO op_fsqrt(void) { helper_fsqrt(); } void OPPROTO op_fsincos(void) { helper_fsincos(); } void OPPROTO op_frndint(void) { helper_frndint(); } void OPPROTO op_fscale(void) { helper_fscale(); } void OPPROTO op_fsin(void) { helper_fsin(); } void OPPROTO op_fcos(void) { helper_fcos(); } void OPPROTO op_fnstsw_A0(void) { int fpus; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; stw(A0, fpus); } void OPPROTO op_fnstsw_EAX(void) { int fpus; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; EAX = (EAX & ~0xffff) | fpus; } void OPPROTO op_fnstcw_A0(void) { stw(A0, env->fpuc); } void OPPROTO op_fldcw_A0(void) { int rnd_type; env->fpuc = lduw(A0); /* set rounding mode */ switch(env->fpuc & RC_MASK) { default: case RC_NEAR: rnd_type = FE_TONEAREST; break; case RC_DOWN: rnd_type = FE_DOWNWARD; break; case RC_UP: rnd_type = FE_UPWARD; break; case RC_CHOP: rnd_type = FE_TOWARDZERO; break; } fesetround(rnd_type); } void OPPROTO op_fclex(void) { env->fpus &= 0x7f00; } void OPPROTO op_fwait(void) { if (env->fpus & FPUS_SE) fpu_raise_exception(); FORCE_RET(); } void OPPROTO op_fninit(void) { env->fpus = 0; env->fpstt = 0; env->fpuc = 0x37f; env->fptags[0] = 1; env->fptags[1] = 1; env->fptags[2] = 1; env->fptags[3] = 1; env->fptags[4] = 1; env->fptags[5] = 1; env->fptags[6] = 1; env->fptags[7] = 1; } void OPPROTO op_fnstenv_A0(void) { helper_fstenv(A0, PARAM1); } void OPPROTO op_fldenv_A0(void) { helper_fldenv(A0, PARAM1); } void OPPROTO op_fnsave_A0(void) { helper_fsave(A0, PARAM1); } void OPPROTO op_frstor_A0(void) { helper_frstor(A0, PARAM1); } /* threading support */ void OPPROTO op_lock(void) { cpu_lock(); } void OPPROTO op_unlock(void) { cpu_unlock(); } /* SSE support */ static inline void memcpy16(void *d, void *s) { ((uint32_t *)d)[0] = ((uint32_t *)s)[0]; ((uint32_t *)d)[1] = ((uint32_t *)s)[1]; ((uint32_t *)d)[2] = ((uint32_t *)s)[2]; ((uint32_t *)d)[3] = ((uint32_t *)s)[3]; } void OPPROTO op_movo(void) { /* XXX: badly generated code */ XMMReg *d, *s; d = (XMMReg *)((char *)env + PARAM1); s = (XMMReg *)((char *)env + PARAM2); memcpy16(d, s); } void OPPROTO op_movq(void) { uint64_t *d, *s; d = (uint64_t *)((char *)env + PARAM1); s = (uint64_t *)((char *)env + PARAM2); *d = *s; } void OPPROTO op_movl(void) { uint32_t *d, *s; d = (uint32_t *)((char *)env + PARAM1); s = (uint32_t *)((char *)env + PARAM2); *d = *s; } void OPPROTO op_movq_env_0(void) { uint64_t *d; d = (uint64_t *)((char *)env + PARAM1); *d = 0; } void OPPROTO op_fxsave_A0(void) { helper_fxsave(A0, PARAM1); } void OPPROTO op_fxrstor_A0(void) { helper_fxrstor(A0, PARAM1); } /* XXX: optimize by storing fptt and fptags in the static cpu state */ void OPPROTO op_enter_mmx(void) { env->fpstt = 0; *(uint32_t *)(env->fptags) = 0; *(uint32_t *)(env->fptags + 4) = 0; } void OPPROTO op_emms(void) { /* set to empty state */ *(uint32_t *)(env->fptags) = 0x01010101; *(uint32_t *)(env->fptags + 4) = 0x01010101; } #define SHIFT 0 #include "ops_sse.h" #define SHIFT 1 #include "ops_sse.h"