/* * MIPS Boston development board emulation. * * Copyright (c) 2016 Imagination Technologies * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "exec/address-spaces.h" #include "hw/boards.h" #include "hw/char/serial.h" #include "hw/ide/pci.h" #include "hw/ide/ahci.h" #include "hw/loader.h" #include "hw/loader-fit.h" #include "hw/mips/cps.h" #include "hw/mips/cpudevs.h" #include "hw/pci-host/xilinx-pcie.h" #include "hw/qdev-properties.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "chardev/char.h" #include "sysemu/device_tree.h" #include "sysemu/sysemu.h" #include "sysemu/qtest.h" #include "sysemu/runstate.h" #include <libfdt.h> #define TYPE_MIPS_BOSTON "mips-boston" #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON) typedef struct { SysBusDevice parent_obj; MachineState *mach; MIPSCPSState cps; SerialState *uart; CharBackend lcd_display; char lcd_content[8]; bool lcd_inited; hwaddr kernel_entry; hwaddr fdt_base; } BostonState; enum boston_plat_reg { PLAT_FPGA_BUILD = 0x00, PLAT_CORE_CL = 0x04, PLAT_WRAPPER_CL = 0x08, PLAT_SYSCLK_STATUS = 0x0c, PLAT_SOFTRST_CTL = 0x10, #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4) PLAT_DDR3_STATUS = 0x14, #define PLAT_DDR3_STATUS_LOCKED (1 << 0) #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2) PLAT_PCIE_STATUS = 0x18, #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0) #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8) #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16) PLAT_FLASH_CTL = 0x1c, PLAT_SPARE0 = 0x20, PLAT_SPARE1 = 0x24, PLAT_SPARE2 = 0x28, PLAT_SPARE3 = 0x2c, PLAT_MMCM_DIV = 0x30, #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0 #define PLAT_MMCM_DIV_INPUT_SHIFT 8 #define PLAT_MMCM_DIV_MUL_SHIFT 16 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24 PLAT_BUILD_CFG = 0x34, #define PLAT_BUILD_CFG_IOCU_EN (1 << 0) #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1) #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2) #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3) PLAT_DDR_CFG = 0x38, #define PLAT_DDR_CFG_SIZE (0xf << 0) #define PLAT_DDR_CFG_MHZ (0xfff << 4) PLAT_NOC_PCIE0_ADDR = 0x3c, PLAT_NOC_PCIE1_ADDR = 0x40, PLAT_NOC_PCIE2_ADDR = 0x44, PLAT_SYS_CTL = 0x48, }; static void boston_lcd_event(void *opaque, int event) { BostonState *s = opaque; if (event == CHR_EVENT_OPENED && !s->lcd_inited) { qemu_chr_fe_printf(&s->lcd_display, " "); s->lcd_inited = true; } } static uint64_t boston_lcd_read(void *opaque, hwaddr addr, unsigned size) { BostonState *s = opaque; uint64_t val = 0; switch (size) { case 8: val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56; val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48; val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40; val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32; /* fall through */ case 4: val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24; val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16; /* fall through */ case 2: val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8; /* fall through */ case 1: val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7]; break; } return val; } static void boston_lcd_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { BostonState *s = opaque; switch (size) { case 8: s->lcd_content[(addr + 7) & 0x7] = val >> 56; s->lcd_content[(addr + 6) & 0x7] = val >> 48; s->lcd_content[(addr + 5) & 0x7] = val >> 40; s->lcd_content[(addr + 4) & 0x7] = val >> 32; /* fall through */ case 4: s->lcd_content[(addr + 3) & 0x7] = val >> 24; s->lcd_content[(addr + 2) & 0x7] = val >> 16; /* fall through */ case 2: s->lcd_content[(addr + 1) & 0x7] = val >> 8; /* fall through */ case 1: s->lcd_content[(addr + 0) & 0x7] = val; break; } qemu_chr_fe_printf(&s->lcd_display, "\r%-8.8s", s->lcd_content); } static const MemoryRegionOps boston_lcd_ops = { .read = boston_lcd_read, .write = boston_lcd_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static uint64_t boston_platreg_read(void *opaque, hwaddr addr, unsigned size) { BostonState *s = opaque; uint32_t gic_freq, val; if (size != 4) { qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size); return 0; } switch (addr & 0xffff) { case PLAT_FPGA_BUILD: case PLAT_CORE_CL: case PLAT_WRAPPER_CL: return 0; case PLAT_DDR3_STATUS: return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED; case PLAT_MMCM_DIV: gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000; val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT; val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT; val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT; val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT; return val; case PLAT_BUILD_CFG: val = PLAT_BUILD_CFG_PCIE0_EN; val |= PLAT_BUILD_CFG_PCIE1_EN; val |= PLAT_BUILD_CFG_PCIE2_EN; return val; case PLAT_DDR_CFG: val = s->mach->ram_size / GiB; assert(!(val & ~PLAT_DDR_CFG_SIZE)); val |= PLAT_DDR_CFG_MHZ; return val; default: qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n", addr & 0xffff); return 0; } } static void boston_platreg_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { if (size != 4) { qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size); return; } switch (addr & 0xffff) { case PLAT_FPGA_BUILD: case PLAT_CORE_CL: case PLAT_WRAPPER_CL: case PLAT_DDR3_STATUS: case PLAT_PCIE_STATUS: case PLAT_MMCM_DIV: case PLAT_BUILD_CFG: case PLAT_DDR_CFG: /* read only */ break; case PLAT_SOFTRST_CTL: if (val & PLAT_SOFTRST_CTL_SYSRESET) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; default: qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx " = 0x%" PRIx64 "\n", addr & 0xffff, val); break; } } static const MemoryRegionOps boston_platreg_ops = { .read = boston_platreg_read, .write = boston_platreg_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const TypeInfo boston_device = { .name = TYPE_MIPS_BOSTON, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(BostonState), }; static void boston_register_types(void) { type_register_static(&boston_device); } type_init(boston_register_types) static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr, bool is_64b) { const uint32_t cm_base = 0x16100000; const uint32_t gic_base = 0x16120000; const uint32_t cpc_base = 0x16200000; /* Move CM GCRs */ if (is_64b) { stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */ stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */ } else { stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */ stl_p(p++, 0x00084100); /* sll $8, $8, 4 */ } stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */ stl_p(p++, 0x01094025); /* or $8, $9 */ stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */ if (is_64b) { stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */ } else { stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */ } stl_p(p++, 0x012a4025); /* or $8, $10 */ /* Move & enable GIC GCRs */ stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */ stl_p(p++, 0x35290001); /* ori $9, 0x1 */ if (is_64b) { stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */ } else { stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */ } /* Move & enable CPC GCRs */ stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */ stl_p(p++, 0x35290001); /* ori $9, 0x1 */ if (is_64b) { stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */ } else { stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */ } /* * Setup argument registers to follow the UHI boot protocol: * * a0/$4 = -2 * a1/$5 = virtual address of FDT * a2/$6 = 0 * a3/$7 = 0 */ stl_p(p++, 0x2404fffe); /* li $4, -2 */ /* lui $5, hi(fdt_addr) */ stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff)); if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */ stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff)); } stl_p(p++, 0x34060000); /* li $6, 0 */ stl_p(p++, 0x34070000); /* li $7, 0 */ /* Load kernel entry address & jump to it */ /* lui $25, hi(kernel_entry) */ stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff)); /* ori $25, lo(kernel_entry) */ stl_p(p++, 0x37390000 | (kernel_entry & 0xffff)); stl_p(p++, 0x03200009); /* jr $25 */ } static const void *boston_fdt_filter(void *opaque, const void *fdt_orig, const void *match_data, hwaddr *load_addr) { BostonState *s = BOSTON(opaque); MachineState *machine = s->mach; const char *cmdline; int err; void *fdt; size_t fdt_sz, ram_low_sz, ram_high_sz; fdt_sz = fdt_totalsize(fdt_orig) * 2; fdt = g_malloc0(fdt_sz); err = fdt_open_into(fdt_orig, fdt, fdt_sz); if (err) { fprintf(stderr, "unable to open FDT\n"); return NULL; } cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0]) ? machine->kernel_cmdline : " "; err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); if (err < 0) { fprintf(stderr, "couldn't set /chosen/bootargs\n"); return NULL; } ram_low_sz = MIN(256 * MiB, machine->ram_size); ram_high_sz = machine->ram_size - ram_low_sz; qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg", 1, 0x00000000, 1, ram_low_sz, 1, 0x90000000, 1, ram_high_sz); fdt = g_realloc(fdt, fdt_totalsize(fdt)); qemu_fdt_dumpdtb(fdt, fdt_sz); s->fdt_base = *load_addr; return fdt; } static const void *boston_kernel_filter(void *opaque, const void *kernel, hwaddr *load_addr, hwaddr *entry_addr) { BostonState *s = BOSTON(opaque); s->kernel_entry = *entry_addr; return kernel; } static const struct fit_loader_match boston_matches[] = { { "img,boston" }, { NULL }, }; static const struct fit_loader boston_fit_loader = { .matches = boston_matches, .addr_to_phys = cpu_mips_kseg0_to_phys, .fdt_filter = boston_fdt_filter, .kernel_filter = boston_kernel_filter, }; static inline XilinxPCIEHost * xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr, hwaddr cfg_base, uint64_t cfg_size, hwaddr mmio_base, uint64_t mmio_size, qemu_irq irq, bool link_up) { DeviceState *dev; MemoryRegion *cfg, *mmio; dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST); qdev_prop_set_uint32(dev, "bus_nr", bus_nr); qdev_prop_set_uint64(dev, "cfg_base", cfg_base); qdev_prop_set_uint64(dev, "cfg_size", cfg_size); qdev_prop_set_uint64(dev, "mmio_base", mmio_base); qdev_prop_set_uint64(dev, "mmio_size", mmio_size); qdev_prop_set_bit(dev, "link_up", link_up); qdev_init_nofail(dev); cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0); mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0); qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq); return XILINX_PCIE_HOST(dev); } static void boston_mach_init(MachineState *machine) { DeviceState *dev; BostonState *s; Error *err = NULL; MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg; MemoryRegion *sys_mem = get_system_memory(); XilinxPCIEHost *pcie2; PCIDevice *ahci; DriveInfo *hd[6]; Chardev *chr; int fw_size, fit_err; bool is_64b; if ((machine->ram_size % GiB) || (machine->ram_size > (2 * GiB))) { error_report("Memory size must be 1GB or 2GB"); exit(1); } dev = qdev_create(NULL, TYPE_MIPS_BOSTON); qdev_init_nofail(dev); s = BOSTON(dev); s->mach = machine; if (!cpu_supports_cps_smp(machine->cpu_type)) { error_report("Boston requires CPUs which support CPS"); exit(1); } is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64); sysbus_init_child_obj(OBJECT(machine), "cps", OBJECT(&s->cps), sizeof(s->cps), TYPE_MIPS_CPS); object_property_set_str(OBJECT(&s->cps), machine->cpu_type, "cpu-type", &err); object_property_set_int(OBJECT(&s->cps), machine->smp.cpus, "num-vp", &err); object_property_set_bool(OBJECT(&s->cps), true, "realized", &err); if (err != NULL) { error_report("%s", error_get_pretty(err)); exit(1); } sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); flash = g_new(MemoryRegion, 1); memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err); memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0); ddr = g_new(MemoryRegion, 1); memory_region_allocate_system_memory(ddr, NULL, "boston.ddr", machine->ram_size); memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0); ddr_low_alias = g_new(MemoryRegion, 1); memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr", ddr, 0, MIN(machine->ram_size, (256 * MiB))); memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0); xilinx_pcie_init(sys_mem, 0, 0x10000000, 32 * MiB, 0x40000000, 1 * GiB, get_cps_irq(&s->cps, 2), false); xilinx_pcie_init(sys_mem, 1, 0x12000000, 32 * MiB, 0x20000000, 512 * MiB, get_cps_irq(&s->cps, 1), false); pcie2 = xilinx_pcie_init(sys_mem, 2, 0x14000000, 32 * MiB, 0x16000000, 1 * MiB, get_cps_irq(&s->cps, 0), true); platreg = g_new(MemoryRegion, 1); memory_region_init_io(platreg, NULL, &boston_platreg_ops, s, "boston-platregs", 0x1000); memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0); s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2, get_cps_irq(&s->cps, 3), 10000000, serial_hd(0), DEVICE_NATIVE_ENDIAN); lcd = g_new(MemoryRegion, 1); memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8); memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0); chr = qemu_chr_new("lcd", "vc:320x240", NULL); qemu_chr_fe_init(&s->lcd_display, chr, NULL); qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL, boston_lcd_event, NULL, s, NULL, true); ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus, PCI_DEVFN(0, 0), true, TYPE_ICH9_AHCI); g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci)); ide_drive_get(hd, ahci_get_num_ports(ahci)); ahci_ide_create_devs(ahci, hd); if (machine->firmware) { fw_size = load_image_targphys(machine->firmware, 0x1fc00000, 4 * MiB); if (fw_size == -1) { error_report("unable to load firmware image '%s'", machine->firmware); exit(1); } } else if (machine->kernel_filename) { fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s); if (fit_err) { error_report("unable to load FIT image"); exit(1); } gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000, s->kernel_entry, s->fdt_base, is_64b); } else if (!qtest_enabled()) { error_report("Please provide either a -kernel or -bios argument"); exit(1); } } static void boston_mach_class_init(MachineClass *mc) { mc->desc = "MIPS Boston"; mc->init = boston_mach_init; mc->block_default_type = IF_IDE; mc->default_ram_size = 1 * GiB; mc->max_cpus = 16; mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400"); } DEFINE_MACHINE("boston", boston_mach_class_init)