/* * QEMU RISC-V CPU * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "qemu/ctype.h" #include "qemu/log.h" #include "cpu.h" #include "cpu_vendorid.h" #include "internals.h" #include "exec/exec-all.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "qemu/error-report.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "fpu/softfloat-helpers.h" #include "sysemu/kvm.h" #include "sysemu/tcg.h" #include "kvm/kvm_riscv.h" #include "tcg/tcg-cpu.h" #include "tcg/tcg.h" /* RISC-V CPU definitions */ static const char riscv_single_letter_exts[] = "IEMAFDQCPVH"; const uint32_t misa_bits[] = {RVI, RVE, RVM, RVA, RVF, RVD, RVV, RVC, RVS, RVU, RVH, RVJ, RVG, 0}; /* * From vector_helper.c * Note that vector data is stored in host-endian 64-bit chunks, * so addressing bytes needs a host-endian fixup. */ #if HOST_BIG_ENDIAN #define BYTE(x) ((x) ^ 7) #else #define BYTE(x) (x) #endif #define ISA_EXT_DATA_ENTRY(_name, _min_ver, _prop) \ {#_name, _min_ver, CPU_CFG_OFFSET(_prop)} /* * Here are the ordering rules of extension naming defined by RISC-V * specification : * 1. All extensions should be separated from other multi-letter extensions * by an underscore. * 2. The first letter following the 'Z' conventionally indicates the most * closely related alphabetical extension category, IMAFDQLCBKJTPVH. * If multiple 'Z' extensions are named, they should be ordered first * by category, then alphabetically within a category. * 3. Standard supervisor-level extensions (starts with 'S') should be * listed after standard unprivileged extensions. If multiple * supervisor-level extensions are listed, they should be ordered * alphabetically. * 4. Non-standard extensions (starts with 'X') must be listed after all * standard extensions. They must be separated from other multi-letter * extensions by an underscore. * * Single letter extensions are checked in riscv_cpu_validate_misa_priv() * instead. */ const RISCVIsaExtData isa_edata_arr[] = { ISA_EXT_DATA_ENTRY(zicbom, PRIV_VERSION_1_12_0, ext_zicbom), ISA_EXT_DATA_ENTRY(zicbop, PRIV_VERSION_1_12_0, ext_zicbop), ISA_EXT_DATA_ENTRY(zicboz, PRIV_VERSION_1_12_0, ext_zicboz), ISA_EXT_DATA_ENTRY(zicond, PRIV_VERSION_1_12_0, ext_zicond), ISA_EXT_DATA_ENTRY(zicntr, PRIV_VERSION_1_12_0, ext_zicntr), ISA_EXT_DATA_ENTRY(zicsr, PRIV_VERSION_1_10_0, ext_zicsr), ISA_EXT_DATA_ENTRY(zifencei, PRIV_VERSION_1_10_0, ext_zifencei), ISA_EXT_DATA_ENTRY(zihintntl, PRIV_VERSION_1_10_0, ext_zihintntl), ISA_EXT_DATA_ENTRY(zihintpause, PRIV_VERSION_1_10_0, ext_zihintpause), ISA_EXT_DATA_ENTRY(zihpm, PRIV_VERSION_1_12_0, ext_zihpm), ISA_EXT_DATA_ENTRY(zmmul, PRIV_VERSION_1_12_0, ext_zmmul), ISA_EXT_DATA_ENTRY(zacas, PRIV_VERSION_1_12_0, ext_zacas), ISA_EXT_DATA_ENTRY(zawrs, PRIV_VERSION_1_12_0, ext_zawrs), ISA_EXT_DATA_ENTRY(zfa, PRIV_VERSION_1_12_0, ext_zfa), ISA_EXT_DATA_ENTRY(zfbfmin, PRIV_VERSION_1_12_0, ext_zfbfmin), ISA_EXT_DATA_ENTRY(zfh, PRIV_VERSION_1_11_0, ext_zfh), ISA_EXT_DATA_ENTRY(zfhmin, PRIV_VERSION_1_11_0, ext_zfhmin), ISA_EXT_DATA_ENTRY(zfinx, PRIV_VERSION_1_12_0, ext_zfinx), ISA_EXT_DATA_ENTRY(zdinx, PRIV_VERSION_1_12_0, ext_zdinx), ISA_EXT_DATA_ENTRY(zca, PRIV_VERSION_1_12_0, ext_zca), ISA_EXT_DATA_ENTRY(zcb, PRIV_VERSION_1_12_0, ext_zcb), ISA_EXT_DATA_ENTRY(zcf, PRIV_VERSION_1_12_0, ext_zcf), ISA_EXT_DATA_ENTRY(zcd, PRIV_VERSION_1_12_0, ext_zcd), ISA_EXT_DATA_ENTRY(zce, PRIV_VERSION_1_12_0, ext_zce), ISA_EXT_DATA_ENTRY(zcmp, PRIV_VERSION_1_12_0, ext_zcmp), ISA_EXT_DATA_ENTRY(zcmt, PRIV_VERSION_1_12_0, ext_zcmt), ISA_EXT_DATA_ENTRY(zba, PRIV_VERSION_1_12_0, ext_zba), ISA_EXT_DATA_ENTRY(zbb, PRIV_VERSION_1_12_0, ext_zbb), ISA_EXT_DATA_ENTRY(zbc, PRIV_VERSION_1_12_0, ext_zbc), ISA_EXT_DATA_ENTRY(zbkb, PRIV_VERSION_1_12_0, ext_zbkb), ISA_EXT_DATA_ENTRY(zbkc, PRIV_VERSION_1_12_0, ext_zbkc), ISA_EXT_DATA_ENTRY(zbkx, PRIV_VERSION_1_12_0, ext_zbkx), ISA_EXT_DATA_ENTRY(zbs, PRIV_VERSION_1_12_0, ext_zbs), ISA_EXT_DATA_ENTRY(zk, PRIV_VERSION_1_12_0, ext_zk), ISA_EXT_DATA_ENTRY(zkn, PRIV_VERSION_1_12_0, ext_zkn), ISA_EXT_DATA_ENTRY(zknd, PRIV_VERSION_1_12_0, ext_zknd), ISA_EXT_DATA_ENTRY(zkne, PRIV_VERSION_1_12_0, ext_zkne), ISA_EXT_DATA_ENTRY(zknh, PRIV_VERSION_1_12_0, ext_zknh), ISA_EXT_DATA_ENTRY(zkr, PRIV_VERSION_1_12_0, ext_zkr), ISA_EXT_DATA_ENTRY(zks, PRIV_VERSION_1_12_0, ext_zks), ISA_EXT_DATA_ENTRY(zksed, PRIV_VERSION_1_12_0, ext_zksed), ISA_EXT_DATA_ENTRY(zksh, PRIV_VERSION_1_12_0, ext_zksh), ISA_EXT_DATA_ENTRY(zkt, PRIV_VERSION_1_12_0, ext_zkt), ISA_EXT_DATA_ENTRY(zvbb, PRIV_VERSION_1_12_0, ext_zvbb), ISA_EXT_DATA_ENTRY(zvbc, PRIV_VERSION_1_12_0, ext_zvbc), ISA_EXT_DATA_ENTRY(zve32f, PRIV_VERSION_1_10_0, ext_zve32f), ISA_EXT_DATA_ENTRY(zve64f, PRIV_VERSION_1_10_0, ext_zve64f), ISA_EXT_DATA_ENTRY(zve64d, PRIV_VERSION_1_10_0, ext_zve64d), ISA_EXT_DATA_ENTRY(zvfbfmin, PRIV_VERSION_1_12_0, ext_zvfbfmin), ISA_EXT_DATA_ENTRY(zvfbfwma, PRIV_VERSION_1_12_0, ext_zvfbfwma), ISA_EXT_DATA_ENTRY(zvfh, PRIV_VERSION_1_12_0, ext_zvfh), ISA_EXT_DATA_ENTRY(zvfhmin, PRIV_VERSION_1_12_0, ext_zvfhmin), ISA_EXT_DATA_ENTRY(zvkb, PRIV_VERSION_1_12_0, ext_zvkb), ISA_EXT_DATA_ENTRY(zvkg, PRIV_VERSION_1_12_0, ext_zvkg), ISA_EXT_DATA_ENTRY(zvkn, PRIV_VERSION_1_12_0, ext_zvkn), ISA_EXT_DATA_ENTRY(zvknc, PRIV_VERSION_1_12_0, ext_zvknc), ISA_EXT_DATA_ENTRY(zvkned, PRIV_VERSION_1_12_0, ext_zvkned), ISA_EXT_DATA_ENTRY(zvkng, PRIV_VERSION_1_12_0, ext_zvkng), ISA_EXT_DATA_ENTRY(zvknha, PRIV_VERSION_1_12_0, ext_zvknha), ISA_EXT_DATA_ENTRY(zvknhb, PRIV_VERSION_1_12_0, ext_zvknhb), ISA_EXT_DATA_ENTRY(zvks, PRIV_VERSION_1_12_0, ext_zvks), ISA_EXT_DATA_ENTRY(zvksc, PRIV_VERSION_1_12_0, ext_zvksc), ISA_EXT_DATA_ENTRY(zvksed, PRIV_VERSION_1_12_0, ext_zvksed), ISA_EXT_DATA_ENTRY(zvksg, PRIV_VERSION_1_12_0, ext_zvksg), ISA_EXT_DATA_ENTRY(zvksh, PRIV_VERSION_1_12_0, ext_zvksh), ISA_EXT_DATA_ENTRY(zvkt, PRIV_VERSION_1_12_0, ext_zvkt), ISA_EXT_DATA_ENTRY(zhinx, PRIV_VERSION_1_12_0, ext_zhinx), ISA_EXT_DATA_ENTRY(zhinxmin, PRIV_VERSION_1_12_0, ext_zhinxmin), ISA_EXT_DATA_ENTRY(smaia, PRIV_VERSION_1_12_0, ext_smaia), ISA_EXT_DATA_ENTRY(smepmp, PRIV_VERSION_1_12_0, ext_smepmp), ISA_EXT_DATA_ENTRY(smstateen, PRIV_VERSION_1_12_0, ext_smstateen), ISA_EXT_DATA_ENTRY(ssaia, PRIV_VERSION_1_12_0, ext_ssaia), ISA_EXT_DATA_ENTRY(sscofpmf, PRIV_VERSION_1_12_0, ext_sscofpmf), ISA_EXT_DATA_ENTRY(sstc, PRIV_VERSION_1_12_0, ext_sstc), ISA_EXT_DATA_ENTRY(svadu, PRIV_VERSION_1_12_0, ext_svadu), ISA_EXT_DATA_ENTRY(svinval, PRIV_VERSION_1_12_0, ext_svinval), ISA_EXT_DATA_ENTRY(svnapot, PRIV_VERSION_1_12_0, ext_svnapot), ISA_EXT_DATA_ENTRY(svpbmt, PRIV_VERSION_1_12_0, ext_svpbmt), ISA_EXT_DATA_ENTRY(xtheadba, PRIV_VERSION_1_11_0, ext_xtheadba), ISA_EXT_DATA_ENTRY(xtheadbb, PRIV_VERSION_1_11_0, ext_xtheadbb), ISA_EXT_DATA_ENTRY(xtheadbs, PRIV_VERSION_1_11_0, ext_xtheadbs), ISA_EXT_DATA_ENTRY(xtheadcmo, PRIV_VERSION_1_11_0, ext_xtheadcmo), ISA_EXT_DATA_ENTRY(xtheadcondmov, PRIV_VERSION_1_11_0, ext_xtheadcondmov), ISA_EXT_DATA_ENTRY(xtheadfmemidx, PRIV_VERSION_1_11_0, ext_xtheadfmemidx), ISA_EXT_DATA_ENTRY(xtheadfmv, PRIV_VERSION_1_11_0, ext_xtheadfmv), ISA_EXT_DATA_ENTRY(xtheadmac, PRIV_VERSION_1_11_0, ext_xtheadmac), ISA_EXT_DATA_ENTRY(xtheadmemidx, PRIV_VERSION_1_11_0, ext_xtheadmemidx), ISA_EXT_DATA_ENTRY(xtheadmempair, PRIV_VERSION_1_11_0, ext_xtheadmempair), ISA_EXT_DATA_ENTRY(xtheadsync, PRIV_VERSION_1_11_0, ext_xtheadsync), ISA_EXT_DATA_ENTRY(xventanacondops, PRIV_VERSION_1_12_0, ext_XVentanaCondOps), DEFINE_PROP_END_OF_LIST(), }; bool isa_ext_is_enabled(RISCVCPU *cpu, uint32_t ext_offset) { bool *ext_enabled = (void *)&cpu->cfg + ext_offset; return *ext_enabled; } void isa_ext_update_enabled(RISCVCPU *cpu, uint32_t ext_offset, bool en) { bool *ext_enabled = (void *)&cpu->cfg + ext_offset; *ext_enabled = en; } const char * const riscv_int_regnames[] = { "x0/zero", "x1/ra", "x2/sp", "x3/gp", "x4/tp", "x5/t0", "x6/t1", "x7/t2", "x8/s0", "x9/s1", "x10/a0", "x11/a1", "x12/a2", "x13/a3", "x14/a4", "x15/a5", "x16/a6", "x17/a7", "x18/s2", "x19/s3", "x20/s4", "x21/s5", "x22/s6", "x23/s7", "x24/s8", "x25/s9", "x26/s10", "x27/s11", "x28/t3", "x29/t4", "x30/t5", "x31/t6" }; const char * const riscv_int_regnamesh[] = { "x0h/zeroh", "x1h/rah", "x2h/sph", "x3h/gph", "x4h/tph", "x5h/t0h", "x6h/t1h", "x7h/t2h", "x8h/s0h", "x9h/s1h", "x10h/a0h", "x11h/a1h", "x12h/a2h", "x13h/a3h", "x14h/a4h", "x15h/a5h", "x16h/a6h", "x17h/a7h", "x18h/s2h", "x19h/s3h", "x20h/s4h", "x21h/s5h", "x22h/s6h", "x23h/s7h", "x24h/s8h", "x25h/s9h", "x26h/s10h", "x27h/s11h", "x28h/t3h", "x29h/t4h", "x30h/t5h", "x31h/t6h" }; const char * const riscv_fpr_regnames[] = { "f0/ft0", "f1/ft1", "f2/ft2", "f3/ft3", "f4/ft4", "f5/ft5", "f6/ft6", "f7/ft7", "f8/fs0", "f9/fs1", "f10/fa0", "f11/fa1", "f12/fa2", "f13/fa3", "f14/fa4", "f15/fa5", "f16/fa6", "f17/fa7", "f18/fs2", "f19/fs3", "f20/fs4", "f21/fs5", "f22/fs6", "f23/fs7", "f24/fs8", "f25/fs9", "f26/fs10", "f27/fs11", "f28/ft8", "f29/ft9", "f30/ft10", "f31/ft11" }; const char * const riscv_rvv_regnames[] = { "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" }; static const char * const riscv_excp_names[] = { "misaligned_fetch", "fault_fetch", "illegal_instruction", "breakpoint", "misaligned_load", "fault_load", "misaligned_store", "fault_store", "user_ecall", "supervisor_ecall", "hypervisor_ecall", "machine_ecall", "exec_page_fault", "load_page_fault", "reserved", "store_page_fault", "reserved", "reserved", "reserved", "reserved", "guest_exec_page_fault", "guest_load_page_fault", "reserved", "guest_store_page_fault", }; static const char * const riscv_intr_names[] = { "u_software", "s_software", "vs_software", "m_software", "u_timer", "s_timer", "vs_timer", "m_timer", "u_external", "s_external", "vs_external", "m_external", "reserved", "reserved", "reserved", "reserved" }; const char *riscv_cpu_get_trap_name(target_ulong cause, bool async) { if (async) { return (cause < ARRAY_SIZE(riscv_intr_names)) ? riscv_intr_names[cause] : "(unknown)"; } else { return (cause < ARRAY_SIZE(riscv_excp_names)) ? riscv_excp_names[cause] : "(unknown)"; } } void riscv_cpu_set_misa(CPURISCVState *env, RISCVMXL mxl, uint32_t ext) { env->misa_mxl_max = env->misa_mxl = mxl; env->misa_ext_mask = env->misa_ext = ext; } #ifndef CONFIG_USER_ONLY static uint8_t satp_mode_from_str(const char *satp_mode_str) { if (!strncmp(satp_mode_str, "mbare", 5)) { return VM_1_10_MBARE; } if (!strncmp(satp_mode_str, "sv32", 4)) { return VM_1_10_SV32; } if (!strncmp(satp_mode_str, "sv39", 4)) { return VM_1_10_SV39; } if (!strncmp(satp_mode_str, "sv48", 4)) { return VM_1_10_SV48; } if (!strncmp(satp_mode_str, "sv57", 4)) { return VM_1_10_SV57; } if (!strncmp(satp_mode_str, "sv64", 4)) { return VM_1_10_SV64; } g_assert_not_reached(); } uint8_t satp_mode_max_from_map(uint32_t map) { /* * 'map = 0' will make us return (31 - 32), which C will * happily overflow to UINT_MAX. There's no good result to * return if 'map = 0' (e.g. returning 0 will be ambiguous * with the result for 'map = 1'). * * Assert out if map = 0. Callers will have to deal with * it outside of this function. */ g_assert(map > 0); /* map here has at least one bit set, so no problem with clz */ return 31 - __builtin_clz(map); } const char *satp_mode_str(uint8_t satp_mode, bool is_32_bit) { if (is_32_bit) { switch (satp_mode) { case VM_1_10_SV32: return "sv32"; case VM_1_10_MBARE: return "none"; } } else { switch (satp_mode) { case VM_1_10_SV64: return "sv64"; case VM_1_10_SV57: return "sv57"; case VM_1_10_SV48: return "sv48"; case VM_1_10_SV39: return "sv39"; case VM_1_10_MBARE: return "none"; } } g_assert_not_reached(); } static void set_satp_mode_max_supported(RISCVCPU *cpu, uint8_t satp_mode) { bool rv32 = riscv_cpu_mxl(&cpu->env) == MXL_RV32; const bool *valid_vm = rv32 ? valid_vm_1_10_32 : valid_vm_1_10_64; for (int i = 0; i <= satp_mode; ++i) { if (valid_vm[i]) { cpu->cfg.satp_mode.supported |= (1 << i); } } } /* Set the satp mode to the max supported */ static void set_satp_mode_default_map(RISCVCPU *cpu) { /* * Bare CPUs do not default to the max available. * Users must set a valid satp_mode in the command * line. */ if (object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_BARE_CPU) != NULL) { warn_report("No satp mode set. Defaulting to 'bare'"); cpu->cfg.satp_mode.map = (1 << VM_1_10_MBARE); return; } cpu->cfg.satp_mode.map = cpu->cfg.satp_mode.supported; } #endif static void riscv_any_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; #if defined(TARGET_RISCV32) riscv_cpu_set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVU); #elif defined(TARGET_RISCV64) riscv_cpu_set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVU); #endif #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), riscv_cpu_mxl(&RISCV_CPU(obj)->env) == MXL_RV32 ? VM_1_10_SV32 : VM_1_10_SV57); #endif env->priv_ver = PRIV_VERSION_LATEST; /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.mmu = true; cpu->cfg.pmp = true; } static void riscv_max_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; RISCVMXL mlx = MXL_RV64; #ifdef TARGET_RISCV32 mlx = MXL_RV32; #endif riscv_cpu_set_misa(env, mlx, 0); env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), mlx == MXL_RV32 ? VM_1_10_SV32 : VM_1_10_SV57); #endif } #if defined(TARGET_RISCV64) static void rv64_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ riscv_cpu_set_misa(env, MXL_RV64, 0); /* Set latest version of privileged specification */ env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV57); #endif } static void rv64_sifive_u_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; riscv_cpu_set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV39); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.mmu = true; cpu->cfg.pmp = true; } static void rv64_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); riscv_cpu_set_misa(env, MXL_RV64, RVI | RVM | RVA | RVC | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.pmp = true; } static void rv64_thead_c906_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); riscv_cpu_set_misa(env, MXL_RV64, RVG | RVC | RVS | RVU); env->priv_ver = PRIV_VERSION_1_11_0; cpu->cfg.ext_zfa = true; cpu->cfg.ext_zfh = true; cpu->cfg.mmu = true; cpu->cfg.ext_xtheadba = true; cpu->cfg.ext_xtheadbb = true; cpu->cfg.ext_xtheadbs = true; cpu->cfg.ext_xtheadcmo = true; cpu->cfg.ext_xtheadcondmov = true; cpu->cfg.ext_xtheadfmemidx = true; cpu->cfg.ext_xtheadmac = true; cpu->cfg.ext_xtheadmemidx = true; cpu->cfg.ext_xtheadmempair = true; cpu->cfg.ext_xtheadsync = true; cpu->cfg.mvendorid = THEAD_VENDOR_ID; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_SV39); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.pmp = true; } static void rv64_veyron_v1_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); riscv_cpu_set_misa(env, MXL_RV64, RVG | RVC | RVS | RVU | RVH); env->priv_ver = PRIV_VERSION_1_12_0; /* Enable ISA extensions */ cpu->cfg.mmu = true; cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.pmp = true; cpu->cfg.ext_zicbom = true; cpu->cfg.cbom_blocksize = 64; cpu->cfg.cboz_blocksize = 64; cpu->cfg.ext_zicboz = true; cpu->cfg.ext_smaia = true; cpu->cfg.ext_ssaia = true; cpu->cfg.ext_sscofpmf = true; cpu->cfg.ext_sstc = true; cpu->cfg.ext_svinval = true; cpu->cfg.ext_svnapot = true; cpu->cfg.ext_svpbmt = true; cpu->cfg.ext_smstateen = true; cpu->cfg.ext_zba = true; cpu->cfg.ext_zbb = true; cpu->cfg.ext_zbc = true; cpu->cfg.ext_zbs = true; cpu->cfg.ext_XVentanaCondOps = true; cpu->cfg.mvendorid = VEYRON_V1_MVENDORID; cpu->cfg.marchid = VEYRON_V1_MARCHID; cpu->cfg.mimpid = VEYRON_V1_MIMPID; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_SV48); #endif } static void rv128_base_cpu_init(Object *obj) { if (qemu_tcg_mttcg_enabled()) { /* Missing 128-bit aligned atomics */ error_report("128-bit RISC-V currently does not work with Multi " "Threaded TCG. Please use: -accel tcg,thread=single"); exit(EXIT_FAILURE); } CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ riscv_cpu_set_misa(env, MXL_RV128, 0); /* Set latest version of privileged specification */ env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV57); #endif } static void rv64i_bare_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; riscv_cpu_set_misa(env, MXL_RV64, RVI); /* Remove the defaults from the parent class */ RISCV_CPU(obj)->cfg.ext_zicntr = false; RISCV_CPU(obj)->cfg.ext_zihpm = false; /* Set to QEMU's first supported priv version */ env->priv_ver = PRIV_VERSION_1_10_0; /* * Support all available satp_mode settings. The default * value will be set to MBARE if the user doesn't set * satp_mode manually (see set_satp_mode_default()). */ #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV64); #endif } #else static void rv32_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ riscv_cpu_set_misa(env, MXL_RV32, 0); /* Set latest version of privileged specification */ env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV32); #endif } static void rv32_sifive_u_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; riscv_cpu_set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV32); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.mmu = true; cpu->cfg.pmp = true; } static void rv32_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); riscv_cpu_set_misa(env, MXL_RV32, RVI | RVM | RVA | RVC | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.pmp = true; } static void rv32_ibex_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); riscv_cpu_set_misa(env, MXL_RV32, RVI | RVM | RVC | RVU); env->priv_ver = PRIV_VERSION_1_12_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.pmp = true; cpu->cfg.ext_smepmp = true; } static void rv32_imafcu_nommu_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); riscv_cpu_set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVC | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_zifencei = true; cpu->cfg.ext_zicsr = true; cpu->cfg.pmp = true; } #endif static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; cpuname = g_strsplit(cpu_model, ",", 1); typename = g_strdup_printf(RISCV_CPU_TYPE_NAME("%s"), cpuname[0]); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); return oc; } char *riscv_cpu_get_name(RISCVCPU *cpu) { RISCVCPUClass *rcc = RISCV_CPU_GET_CLASS(cpu); const char *typename = object_class_get_name(OBJECT_CLASS(rcc)); g_assert(g_str_has_suffix(typename, RISCV_CPU_TYPE_SUFFIX)); return cpu_model_from_type(typename); } static void riscv_cpu_dump_state(CPUState *cs, FILE *f, int flags) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; int i, j; uint8_t *p; #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s %d\n", "V = ", env->virt_enabled); } #endif qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "pc ", env->pc); #ifndef CONFIG_USER_ONLY { static const int dump_csrs[] = { CSR_MHARTID, CSR_MSTATUS, CSR_MSTATUSH, /* * CSR_SSTATUS is intentionally omitted here as its value * can be figured out by looking at CSR_MSTATUS */ CSR_HSTATUS, CSR_VSSTATUS, CSR_MIP, CSR_MIE, CSR_MIDELEG, CSR_HIDELEG, CSR_MEDELEG, CSR_HEDELEG, CSR_MTVEC, CSR_STVEC, CSR_VSTVEC, CSR_MEPC, CSR_SEPC, CSR_VSEPC, CSR_MCAUSE, CSR_SCAUSE, CSR_VSCAUSE, CSR_MTVAL, CSR_STVAL, CSR_HTVAL, CSR_MTVAL2, CSR_MSCRATCH, CSR_SSCRATCH, CSR_SATP, CSR_MMTE, CSR_UPMBASE, CSR_UPMMASK, CSR_SPMBASE, CSR_SPMMASK, CSR_MPMBASE, CSR_MPMMASK, }; for (i = 0; i < ARRAY_SIZE(dump_csrs); ++i) { int csrno = dump_csrs[i]; target_ulong val = 0; RISCVException res = riscv_csrrw_debug(env, csrno, &val, 0, 0); /* * Rely on the smode, hmode, etc, predicates within csr.c * to do the filtering of the registers that are present. */ if (res == RISCV_EXCP_NONE) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx "\n", csr_ops[csrno].name, val); } } } #endif for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx, riscv_int_regnames[i], env->gpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } if (flags & CPU_DUMP_FPU) { for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s %016" PRIx64, riscv_fpr_regnames[i], env->fpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } } if (riscv_has_ext(env, RVV) && (flags & CPU_DUMP_VPU)) { static const int dump_rvv_csrs[] = { CSR_VSTART, CSR_VXSAT, CSR_VXRM, CSR_VCSR, CSR_VL, CSR_VTYPE, CSR_VLENB, }; for (i = 0; i < ARRAY_SIZE(dump_rvv_csrs); ++i) { int csrno = dump_rvv_csrs[i]; target_ulong val = 0; RISCVException res = riscv_csrrw_debug(env, csrno, &val, 0, 0); /* * Rely on the smode, hmode, etc, predicates within csr.c * to do the filtering of the registers that are present. */ if (res == RISCV_EXCP_NONE) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx "\n", csr_ops[csrno].name, val); } } uint16_t vlenb = cpu->cfg.vlen >> 3; for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s ", riscv_rvv_regnames[i]); p = (uint8_t *)env->vreg; for (j = vlenb - 1 ; j >= 0; j--) { qemu_fprintf(f, "%02x", *(p + i * vlenb + BYTE(j))); } qemu_fprintf(f, "\n"); } } } static void riscv_cpu_set_pc(CPUState *cs, vaddr value) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (env->xl == MXL_RV32) { env->pc = (int32_t)value; } else { env->pc = value; } } static vaddr riscv_cpu_get_pc(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* Match cpu_get_tb_cpu_state. */ if (env->xl == MXL_RV32) { return env->pc & UINT32_MAX; } return env->pc; } static bool riscv_cpu_has_work(CPUState *cs) { #ifndef CONFIG_USER_ONLY RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* * Definition of the WFI instruction requires it to ignore the privilege * mode and delegation registers, but respect individual enables */ return riscv_cpu_all_pending(env) != 0 || riscv_cpu_sirq_pending(env) != RISCV_EXCP_NONE || riscv_cpu_vsirq_pending(env) != RISCV_EXCP_NONE; #else return true; #endif } static void riscv_cpu_reset_hold(Object *obj) { #ifndef CONFIG_USER_ONLY uint8_t iprio; int i, irq, rdzero; #endif CPUState *cs = CPU(obj); RISCVCPU *cpu = RISCV_CPU(cs); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu); CPURISCVState *env = &cpu->env; if (mcc->parent_phases.hold) { mcc->parent_phases.hold(obj); } #ifndef CONFIG_USER_ONLY env->misa_mxl = env->misa_mxl_max; env->priv = PRV_M; env->mstatus &= ~(MSTATUS_MIE | MSTATUS_MPRV); if (env->misa_mxl > MXL_RV32) { /* * The reset status of SXL/UXL is undefined, but mstatus is WARL * and we must ensure that the value after init is valid for read. */ env->mstatus = set_field(env->mstatus, MSTATUS64_SXL, env->misa_mxl); env->mstatus = set_field(env->mstatus, MSTATUS64_UXL, env->misa_mxl); if (riscv_has_ext(env, RVH)) { env->vsstatus = set_field(env->vsstatus, MSTATUS64_SXL, env->misa_mxl); env->vsstatus = set_field(env->vsstatus, MSTATUS64_UXL, env->misa_mxl); env->mstatus_hs = set_field(env->mstatus_hs, MSTATUS64_SXL, env->misa_mxl); env->mstatus_hs = set_field(env->mstatus_hs, MSTATUS64_UXL, env->misa_mxl); } } env->mcause = 0; env->miclaim = MIP_SGEIP; env->pc = env->resetvec; env->bins = 0; env->two_stage_lookup = false; env->menvcfg = (cpu->cfg.ext_svpbmt ? MENVCFG_PBMTE : 0) | (cpu->cfg.ext_svadu ? MENVCFG_ADUE : 0); env->henvcfg = (cpu->cfg.ext_svpbmt ? HENVCFG_PBMTE : 0) | (cpu->cfg.ext_svadu ? HENVCFG_ADUE : 0); /* Initialized default priorities of local interrupts. */ for (i = 0; i < ARRAY_SIZE(env->miprio); i++) { iprio = riscv_cpu_default_priority(i); env->miprio[i] = (i == IRQ_M_EXT) ? 0 : iprio; env->siprio[i] = (i == IRQ_S_EXT) ? 0 : iprio; env->hviprio[i] = 0; } i = 0; while (!riscv_cpu_hviprio_index2irq(i, &irq, &rdzero)) { if (!rdzero) { env->hviprio[irq] = env->miprio[irq]; } i++; } /* mmte is supposed to have pm.current hardwired to 1 */ env->mmte |= (EXT_STATUS_INITIAL | MMTE_M_PM_CURRENT); /* * Clear mseccfg and unlock all the PMP entries upon reset. * This is allowed as per the priv and smepmp specifications * and is needed to clear stale entries across reboots. */ if (riscv_cpu_cfg(env)->ext_smepmp) { env->mseccfg = 0; } pmp_unlock_entries(env); #endif env->xl = riscv_cpu_mxl(env); riscv_cpu_update_mask(env); cs->exception_index = RISCV_EXCP_NONE; env->load_res = -1; set_default_nan_mode(1, &env->fp_status); #ifndef CONFIG_USER_ONLY if (cpu->cfg.debug) { riscv_trigger_reset_hold(env); } if (kvm_enabled()) { kvm_riscv_reset_vcpu(cpu); } #endif } static void riscv_cpu_disas_set_info(CPUState *s, disassemble_info *info) { RISCVCPU *cpu = RISCV_CPU(s); CPURISCVState *env = &cpu->env; info->target_info = &cpu->cfg; switch (env->xl) { case MXL_RV32: info->print_insn = print_insn_riscv32; break; case MXL_RV64: info->print_insn = print_insn_riscv64; break; case MXL_RV128: info->print_insn = print_insn_riscv128; break; default: g_assert_not_reached(); } } #ifndef CONFIG_USER_ONLY static void riscv_cpu_satp_mode_finalize(RISCVCPU *cpu, Error **errp) { bool rv32 = riscv_cpu_mxl(&cpu->env) == MXL_RV32; uint8_t satp_mode_map_max, satp_mode_supported_max; /* The CPU wants the OS to decide which satp mode to use */ if (cpu->cfg.satp_mode.supported == 0) { return; } satp_mode_supported_max = satp_mode_max_from_map(cpu->cfg.satp_mode.supported); if (cpu->cfg.satp_mode.map == 0) { if (cpu->cfg.satp_mode.init == 0) { /* If unset by the user, we fallback to the default satp mode. */ set_satp_mode_default_map(cpu); } else { /* * Find the lowest level that was disabled and then enable the * first valid level below which can be found in * valid_vm_1_10_32/64. */ for (int i = 1; i < 16; ++i) { if ((cpu->cfg.satp_mode.init & (1 << i)) && (cpu->cfg.satp_mode.supported & (1 << i))) { for (int j = i - 1; j >= 0; --j) { if (cpu->cfg.satp_mode.supported & (1 << j)) { cpu->cfg.satp_mode.map |= (1 << j); break; } } break; } } } } satp_mode_map_max = satp_mode_max_from_map(cpu->cfg.satp_mode.map); /* Make sure the user asked for a supported configuration (HW and qemu) */ if (satp_mode_map_max > satp_mode_supported_max) { error_setg(errp, "satp_mode %s is higher than hw max capability %s", satp_mode_str(satp_mode_map_max, rv32), satp_mode_str(satp_mode_supported_max, rv32)); return; } /* * Make sure the user did not ask for an invalid configuration as per * the specification. */ if (!rv32) { for (int i = satp_mode_map_max - 1; i >= 0; --i) { if (!(cpu->cfg.satp_mode.map & (1 << i)) && (cpu->cfg.satp_mode.init & (1 << i)) && (cpu->cfg.satp_mode.supported & (1 << i))) { error_setg(errp, "cannot disable %s satp mode if %s " "is enabled", satp_mode_str(i, false), satp_mode_str(satp_mode_map_max, false)); return; } } } /* Finally expand the map so that all valid modes are set */ for (int i = satp_mode_map_max - 1; i >= 0; --i) { if (cpu->cfg.satp_mode.supported & (1 << i)) { cpu->cfg.satp_mode.map |= (1 << i); } } } #endif void riscv_cpu_finalize_features(RISCVCPU *cpu, Error **errp) { Error *local_err = NULL; /* * KVM accel does not have a specialized finalize() * callback because its extensions are validated * in the get()/set() callbacks of each property. */ if (tcg_enabled()) { riscv_tcg_cpu_finalize_features(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } #ifndef CONFIG_USER_ONLY riscv_cpu_satp_mode_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } #endif } static void riscv_cpu_realize(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); RISCVCPU *cpu = RISCV_CPU(dev); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(dev); Error *local_err = NULL; if (object_dynamic_cast(OBJECT(dev), TYPE_RISCV_CPU_ANY) != NULL) { warn_report("The 'any' CPU is deprecated and will be " "removed in the future."); } cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } riscv_cpu_finalize_features(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } riscv_cpu_register_gdb_regs_for_features(cs); #ifndef CONFIG_USER_ONLY if (cpu->cfg.debug) { riscv_trigger_realize(&cpu->env); } #endif qemu_init_vcpu(cs); cpu_reset(cs); mcc->parent_realize(dev, errp); } bool riscv_cpu_accelerator_compatible(RISCVCPU *cpu) { if (tcg_enabled()) { return riscv_cpu_tcg_compatible(cpu); } return true; } #ifndef CONFIG_USER_ONLY static void cpu_riscv_get_satp(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { RISCVSATPMap *satp_map = opaque; uint8_t satp = satp_mode_from_str(name); bool value; value = satp_map->map & (1 << satp); visit_type_bool(v, name, &value, errp); } static void cpu_riscv_set_satp(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { RISCVSATPMap *satp_map = opaque; uint8_t satp = satp_mode_from_str(name); bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } satp_map->map = deposit32(satp_map->map, satp, 1, value); satp_map->init |= 1 << satp; } void riscv_add_satp_mode_properties(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); if (cpu->env.misa_mxl == MXL_RV32) { object_property_add(obj, "sv32", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); } else { object_property_add(obj, "sv39", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); object_property_add(obj, "sv48", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); object_property_add(obj, "sv57", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); object_property_add(obj, "sv64", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); } } static void riscv_cpu_set_irq(void *opaque, int irq, int level) { RISCVCPU *cpu = RISCV_CPU(opaque); CPURISCVState *env = &cpu->env; if (irq < IRQ_LOCAL_MAX) { switch (irq) { case IRQ_U_SOFT: case IRQ_S_SOFT: case IRQ_VS_SOFT: case IRQ_M_SOFT: case IRQ_U_TIMER: case IRQ_S_TIMER: case IRQ_VS_TIMER: case IRQ_M_TIMER: case IRQ_U_EXT: case IRQ_VS_EXT: case IRQ_M_EXT: if (kvm_enabled()) { kvm_riscv_set_irq(cpu, irq, level); } else { riscv_cpu_update_mip(env, 1 << irq, BOOL_TO_MASK(level)); } break; case IRQ_S_EXT: if (kvm_enabled()) { kvm_riscv_set_irq(cpu, irq, level); } else { env->external_seip = level; riscv_cpu_update_mip(env, 1 << irq, BOOL_TO_MASK(level | env->software_seip)); } break; default: g_assert_not_reached(); } } else if (irq < (IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX)) { /* Require H-extension for handling guest local interrupts */ if (!riscv_has_ext(env, RVH)) { g_assert_not_reached(); } /* Compute bit position in HGEIP CSR */ irq = irq - IRQ_LOCAL_MAX + 1; if (env->geilen < irq) { g_assert_not_reached(); } /* Update HGEIP CSR */ env->hgeip &= ~((target_ulong)1 << irq); if (level) { env->hgeip |= (target_ulong)1 << irq; } /* Update mip.SGEIP bit */ riscv_cpu_update_mip(env, MIP_SGEIP, BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); } else { g_assert_not_reached(); } } #endif /* CONFIG_USER_ONLY */ static bool riscv_cpu_is_dynamic(Object *cpu_obj) { return object_dynamic_cast(cpu_obj, TYPE_RISCV_DYNAMIC_CPU) != NULL; } static void riscv_cpu_post_init(Object *obj) { accel_cpu_instance_init(CPU(obj)); } static void riscv_cpu_init(Object *obj) { #ifndef CONFIG_USER_ONLY qdev_init_gpio_in(DEVICE(obj), riscv_cpu_set_irq, IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX); #endif /* CONFIG_USER_ONLY */ /* * The timer and performance counters extensions were supported * in QEMU before they were added as discrete extensions in the * ISA. To keep compatibility we'll always default them to 'true' * for all CPUs. Each accelerator will decide what to do when * users disable them. */ RISCV_CPU(obj)->cfg.ext_zicntr = true; RISCV_CPU(obj)->cfg.ext_zihpm = true; } typedef struct misa_ext_info { const char *name; const char *description; } MISAExtInfo; #define MISA_INFO_IDX(_bit) \ __builtin_ctz(_bit) #define MISA_EXT_INFO(_bit, _propname, _descr) \ [MISA_INFO_IDX(_bit)] = {.name = _propname, .description = _descr} static const MISAExtInfo misa_ext_info_arr[] = { MISA_EXT_INFO(RVA, "a", "Atomic instructions"), MISA_EXT_INFO(RVC, "c", "Compressed instructions"), MISA_EXT_INFO(RVD, "d", "Double-precision float point"), MISA_EXT_INFO(RVF, "f", "Single-precision float point"), MISA_EXT_INFO(RVI, "i", "Base integer instruction set"), MISA_EXT_INFO(RVE, "e", "Base integer instruction set (embedded)"), MISA_EXT_INFO(RVM, "m", "Integer multiplication and division"), MISA_EXT_INFO(RVS, "s", "Supervisor-level instructions"), MISA_EXT_INFO(RVU, "u", "User-level instructions"), MISA_EXT_INFO(RVH, "h", "Hypervisor"), MISA_EXT_INFO(RVJ, "x-j", "Dynamic translated languages"), MISA_EXT_INFO(RVV, "v", "Vector operations"), MISA_EXT_INFO(RVG, "g", "General purpose (IMAFD_Zicsr_Zifencei)"), }; static int riscv_validate_misa_info_idx(uint32_t bit) { int idx; /* * Our lowest valid input (RVA) is 1 and * __builtin_ctz() is UB with zero. */ g_assert(bit != 0); idx = MISA_INFO_IDX(bit); g_assert(idx < ARRAY_SIZE(misa_ext_info_arr)); return idx; } const char *riscv_get_misa_ext_name(uint32_t bit) { int idx = riscv_validate_misa_info_idx(bit); const char *val = misa_ext_info_arr[idx].name; g_assert(val != NULL); return val; } const char *riscv_get_misa_ext_description(uint32_t bit) { int idx = riscv_validate_misa_info_idx(bit); const char *val = misa_ext_info_arr[idx].description; g_assert(val != NULL); return val; } #define MULTI_EXT_CFG_BOOL(_name, _prop, _defval) \ {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \ .enabled = _defval} const RISCVCPUMultiExtConfig riscv_cpu_extensions[] = { /* Defaults for standard extensions */ MULTI_EXT_CFG_BOOL("sscofpmf", ext_sscofpmf, false), MULTI_EXT_CFG_BOOL("zifencei", ext_zifencei, true), MULTI_EXT_CFG_BOOL("zicsr", ext_zicsr, true), MULTI_EXT_CFG_BOOL("zihintntl", ext_zihintntl, true), MULTI_EXT_CFG_BOOL("zihintpause", ext_zihintpause, true), MULTI_EXT_CFG_BOOL("zacas", ext_zacas, false), MULTI_EXT_CFG_BOOL("zawrs", ext_zawrs, true), MULTI_EXT_CFG_BOOL("zfa", ext_zfa, true), MULTI_EXT_CFG_BOOL("zfh", ext_zfh, false), MULTI_EXT_CFG_BOOL("zfhmin", ext_zfhmin, false), MULTI_EXT_CFG_BOOL("zve32f", ext_zve32f, false), MULTI_EXT_CFG_BOOL("zve64f", ext_zve64f, false), MULTI_EXT_CFG_BOOL("zve64d", ext_zve64d, false), MULTI_EXT_CFG_BOOL("sstc", ext_sstc, true), MULTI_EXT_CFG_BOOL("smepmp", ext_smepmp, false), MULTI_EXT_CFG_BOOL("smstateen", ext_smstateen, false), MULTI_EXT_CFG_BOOL("svadu", ext_svadu, true), MULTI_EXT_CFG_BOOL("svinval", ext_svinval, false), MULTI_EXT_CFG_BOOL("svnapot", ext_svnapot, false), MULTI_EXT_CFG_BOOL("svpbmt", ext_svpbmt, false), MULTI_EXT_CFG_BOOL("zicntr", ext_zicntr, true), MULTI_EXT_CFG_BOOL("zihpm", ext_zihpm, true), MULTI_EXT_CFG_BOOL("zba", ext_zba, true), MULTI_EXT_CFG_BOOL("zbb", ext_zbb, true), MULTI_EXT_CFG_BOOL("zbc", ext_zbc, true), MULTI_EXT_CFG_BOOL("zbkb", ext_zbkb, false), MULTI_EXT_CFG_BOOL("zbkc", ext_zbkc, false), MULTI_EXT_CFG_BOOL("zbkx", ext_zbkx, false), MULTI_EXT_CFG_BOOL("zbs", ext_zbs, true), MULTI_EXT_CFG_BOOL("zk", ext_zk, false), MULTI_EXT_CFG_BOOL("zkn", ext_zkn, false), MULTI_EXT_CFG_BOOL("zknd", ext_zknd, false), MULTI_EXT_CFG_BOOL("zkne", ext_zkne, false), MULTI_EXT_CFG_BOOL("zknh", ext_zknh, false), MULTI_EXT_CFG_BOOL("zkr", ext_zkr, false), MULTI_EXT_CFG_BOOL("zks", ext_zks, false), MULTI_EXT_CFG_BOOL("zksed", ext_zksed, false), MULTI_EXT_CFG_BOOL("zksh", ext_zksh, false), MULTI_EXT_CFG_BOOL("zkt", ext_zkt, false), MULTI_EXT_CFG_BOOL("zdinx", ext_zdinx, false), MULTI_EXT_CFG_BOOL("zfinx", ext_zfinx, false), MULTI_EXT_CFG_BOOL("zhinx", ext_zhinx, false), MULTI_EXT_CFG_BOOL("zhinxmin", ext_zhinxmin, false), MULTI_EXT_CFG_BOOL("zicbom", ext_zicbom, true), MULTI_EXT_CFG_BOOL("zicbop", ext_zicbop, true), MULTI_EXT_CFG_BOOL("zicboz", ext_zicboz, true), MULTI_EXT_CFG_BOOL("zmmul", ext_zmmul, false), MULTI_EXT_CFG_BOOL("zca", ext_zca, false), MULTI_EXT_CFG_BOOL("zcb", ext_zcb, false), MULTI_EXT_CFG_BOOL("zcd", ext_zcd, false), MULTI_EXT_CFG_BOOL("zce", ext_zce, false), MULTI_EXT_CFG_BOOL("zcf", ext_zcf, false), MULTI_EXT_CFG_BOOL("zcmp", ext_zcmp, false), MULTI_EXT_CFG_BOOL("zcmt", ext_zcmt, false), MULTI_EXT_CFG_BOOL("zicond", ext_zicond, false), /* Vector cryptography extensions */ MULTI_EXT_CFG_BOOL("zvbb", ext_zvbb, false), MULTI_EXT_CFG_BOOL("zvbc", ext_zvbc, false), MULTI_EXT_CFG_BOOL("zvkb", ext_zvkg, false), MULTI_EXT_CFG_BOOL("zvkg", ext_zvkg, false), MULTI_EXT_CFG_BOOL("zvkned", ext_zvkned, false), MULTI_EXT_CFG_BOOL("zvknha", ext_zvknha, false), MULTI_EXT_CFG_BOOL("zvknhb", ext_zvknhb, false), MULTI_EXT_CFG_BOOL("zvksed", ext_zvksed, false), MULTI_EXT_CFG_BOOL("zvksh", ext_zvksh, false), MULTI_EXT_CFG_BOOL("zvkt", ext_zvkt, false), MULTI_EXT_CFG_BOOL("zvkn", ext_zvkn, false), MULTI_EXT_CFG_BOOL("zvknc", ext_zvknc, false), MULTI_EXT_CFG_BOOL("zvkng", ext_zvkng, false), MULTI_EXT_CFG_BOOL("zvks", ext_zvks, false), MULTI_EXT_CFG_BOOL("zvksc", ext_zvksc, false), MULTI_EXT_CFG_BOOL("zvksg", ext_zvksg, false), DEFINE_PROP_END_OF_LIST(), }; const RISCVCPUMultiExtConfig riscv_cpu_vendor_exts[] = { MULTI_EXT_CFG_BOOL("xtheadba", ext_xtheadba, false), MULTI_EXT_CFG_BOOL("xtheadbb", ext_xtheadbb, false), MULTI_EXT_CFG_BOOL("xtheadbs", ext_xtheadbs, false), MULTI_EXT_CFG_BOOL("xtheadcmo", ext_xtheadcmo, false), MULTI_EXT_CFG_BOOL("xtheadcondmov", ext_xtheadcondmov, false), MULTI_EXT_CFG_BOOL("xtheadfmemidx", ext_xtheadfmemidx, false), MULTI_EXT_CFG_BOOL("xtheadfmv", ext_xtheadfmv, false), MULTI_EXT_CFG_BOOL("xtheadmac", ext_xtheadmac, false), MULTI_EXT_CFG_BOOL("xtheadmemidx", ext_xtheadmemidx, false), MULTI_EXT_CFG_BOOL("xtheadmempair", ext_xtheadmempair, false), MULTI_EXT_CFG_BOOL("xtheadsync", ext_xtheadsync, false), MULTI_EXT_CFG_BOOL("xventanacondops", ext_XVentanaCondOps, false), DEFINE_PROP_END_OF_LIST(), }; /* These are experimental so mark with 'x-' */ const RISCVCPUMultiExtConfig riscv_cpu_experimental_exts[] = { MULTI_EXT_CFG_BOOL("x-smaia", ext_smaia, false), MULTI_EXT_CFG_BOOL("x-ssaia", ext_ssaia, false), MULTI_EXT_CFG_BOOL("x-zvfh", ext_zvfh, false), MULTI_EXT_CFG_BOOL("x-zvfhmin", ext_zvfhmin, false), MULTI_EXT_CFG_BOOL("x-zfbfmin", ext_zfbfmin, false), MULTI_EXT_CFG_BOOL("x-zvfbfmin", ext_zvfbfmin, false), MULTI_EXT_CFG_BOOL("x-zvfbfwma", ext_zvfbfwma, false), DEFINE_PROP_END_OF_LIST(), }; const RISCVCPUMultiExtConfig riscv_cpu_named_features[] = { MULTI_EXT_CFG_BOOL("zic64b", zic64b, true), DEFINE_PROP_END_OF_LIST(), }; /* Deprecated entries marked for future removal */ const RISCVCPUMultiExtConfig riscv_cpu_deprecated_exts[] = { MULTI_EXT_CFG_BOOL("Zifencei", ext_zifencei, true), MULTI_EXT_CFG_BOOL("Zicsr", ext_zicsr, true), MULTI_EXT_CFG_BOOL("Zihintntl", ext_zihintntl, true), MULTI_EXT_CFG_BOOL("Zihintpause", ext_zihintpause, true), MULTI_EXT_CFG_BOOL("Zawrs", ext_zawrs, true), MULTI_EXT_CFG_BOOL("Zfa", ext_zfa, true), MULTI_EXT_CFG_BOOL("Zfh", ext_zfh, false), MULTI_EXT_CFG_BOOL("Zfhmin", ext_zfhmin, false), MULTI_EXT_CFG_BOOL("Zve32f", ext_zve32f, false), MULTI_EXT_CFG_BOOL("Zve64f", ext_zve64f, false), MULTI_EXT_CFG_BOOL("Zve64d", ext_zve64d, false), DEFINE_PROP_END_OF_LIST(), }; static void prop_pmu_num_set(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { RISCVCPU *cpu = RISCV_CPU(obj); uint8_t pmu_num; visit_type_uint8(v, name, &pmu_num, errp); if (pmu_num > (RV_MAX_MHPMCOUNTERS - 3)) { error_setg(errp, "Number of counters exceeds maximum available"); return; } if (pmu_num == 0) { cpu->cfg.pmu_mask = 0; } else { cpu->cfg.pmu_mask = MAKE_64BIT_MASK(3, pmu_num); } warn_report("\"pmu-num\" property is deprecated; use \"pmu-mask\""); } static void prop_pmu_num_get(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { RISCVCPU *cpu = RISCV_CPU(obj); uint8_t pmu_num = ctpop32(cpu->cfg.pmu_mask); visit_type_uint8(v, name, &pmu_num, errp); } const PropertyInfo prop_pmu_num = { .name = "pmu-num", .get = prop_pmu_num_get, .set = prop_pmu_num_set, }; Property riscv_cpu_options[] = { DEFINE_PROP_UINT32("pmu-mask", RISCVCPU, cfg.pmu_mask, MAKE_64BIT_MASK(3, 16)), {.name = "pmu-num", .info = &prop_pmu_num}, /* Deprecated */ DEFINE_PROP_BOOL("mmu", RISCVCPU, cfg.mmu, true), DEFINE_PROP_BOOL("pmp", RISCVCPU, cfg.pmp, true), DEFINE_PROP_STRING("priv_spec", RISCVCPU, cfg.priv_spec), DEFINE_PROP_STRING("vext_spec", RISCVCPU, cfg.vext_spec), DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128), DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64), DEFINE_PROP_UINT16("cbom_blocksize", RISCVCPU, cfg.cbom_blocksize, 64), DEFINE_PROP_UINT16("cbop_blocksize", RISCVCPU, cfg.cbop_blocksize, 64), DEFINE_PROP_UINT16("cboz_blocksize", RISCVCPU, cfg.cboz_blocksize, 64), DEFINE_PROP_END_OF_LIST(), }; /* * RVA22U64 defines some 'named features' or 'synthetic extensions' * that are cache related: Za64rs, Zic64b, Ziccif, Ziccrse, Ziccamoa * and Zicclsm. We do not implement caching in QEMU so we'll consider * all these named features as always enabled. * * There's no riscv,isa update for them (nor for zic64b, despite it * having a cfg offset) at this moment. */ static RISCVCPUProfile RVA22U64 = { .name = "rva22u64", .misa_ext = RVI | RVM | RVA | RVF | RVD | RVC | RVU, .ext_offsets = { CPU_CFG_OFFSET(ext_zicsr), CPU_CFG_OFFSET(ext_zihintpause), CPU_CFG_OFFSET(ext_zba), CPU_CFG_OFFSET(ext_zbb), CPU_CFG_OFFSET(ext_zbs), CPU_CFG_OFFSET(ext_zfhmin), CPU_CFG_OFFSET(ext_zkt), CPU_CFG_OFFSET(ext_zicntr), CPU_CFG_OFFSET(ext_zihpm), CPU_CFG_OFFSET(ext_zicbom), CPU_CFG_OFFSET(ext_zicbop), CPU_CFG_OFFSET(ext_zicboz), /* mandatory named features for this profile */ CPU_CFG_OFFSET(zic64b), RISCV_PROFILE_EXT_LIST_END } }; RISCVCPUProfile *riscv_profiles[] = { &RVA22U64, NULL, }; static Property riscv_cpu_properties[] = { DEFINE_PROP_BOOL("debug", RISCVCPU, cfg.debug, true), #ifndef CONFIG_USER_ONLY DEFINE_PROP_UINT64("resetvec", RISCVCPU, env.resetvec, DEFAULT_RSTVEC), #endif DEFINE_PROP_BOOL("short-isa-string", RISCVCPU, cfg.short_isa_string, false), DEFINE_PROP_BOOL("rvv_ta_all_1s", RISCVCPU, cfg.rvv_ta_all_1s, false), DEFINE_PROP_BOOL("rvv_ma_all_1s", RISCVCPU, cfg.rvv_ma_all_1s, false), /* * write_misa() is marked as experimental for now so mark * it with -x and default to 'false'. */ DEFINE_PROP_BOOL("x-misa-w", RISCVCPU, cfg.misa_w, false), DEFINE_PROP_END_OF_LIST(), }; static const gchar *riscv_gdb_arch_name(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; switch (riscv_cpu_mxl(env)) { case MXL_RV32: return "riscv:rv32"; case MXL_RV64: case MXL_RV128: return "riscv:rv64"; default: g_assert_not_reached(); } } static const char *riscv_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) { RISCVCPU *cpu = RISCV_CPU(cs); if (strcmp(xmlname, "riscv-csr.xml") == 0) { return cpu->dyn_csr_xml; } else if (strcmp(xmlname, "riscv-vector.xml") == 0) { return cpu->dyn_vreg_xml; } return NULL; } #ifndef CONFIG_USER_ONLY static int64_t riscv_get_arch_id(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); return cpu->env.mhartid; } #include "hw/core/sysemu-cpu-ops.h" static const struct SysemuCPUOps riscv_sysemu_ops = { .get_phys_page_debug = riscv_cpu_get_phys_page_debug, .write_elf64_note = riscv_cpu_write_elf64_note, .write_elf32_note = riscv_cpu_write_elf32_note, .legacy_vmsd = &vmstate_riscv_cpu, }; #endif static void cpu_set_mvendorid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool dynamic_cpu = riscv_cpu_is_dynamic(obj); RISCVCPU *cpu = RISCV_CPU(obj); uint32_t prev_val = cpu->cfg.mvendorid; uint32_t value; if (!visit_type_uint32(v, name, &value, errp)) { return; } if (!dynamic_cpu && prev_val != value) { error_setg(errp, "Unable to change %s mvendorid (0x%x)", object_get_typename(obj), prev_val); return; } cpu->cfg.mvendorid = value; } static void cpu_get_mvendorid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { uint32_t value = RISCV_CPU(obj)->cfg.mvendorid; visit_type_uint32(v, name, &value, errp); } static void cpu_set_mimpid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool dynamic_cpu = riscv_cpu_is_dynamic(obj); RISCVCPU *cpu = RISCV_CPU(obj); uint64_t prev_val = cpu->cfg.mimpid; uint64_t value; if (!visit_type_uint64(v, name, &value, errp)) { return; } if (!dynamic_cpu && prev_val != value) { error_setg(errp, "Unable to change %s mimpid (0x%" PRIu64 ")", object_get_typename(obj), prev_val); return; } cpu->cfg.mimpid = value; } static void cpu_get_mimpid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { uint64_t value = RISCV_CPU(obj)->cfg.mimpid; visit_type_uint64(v, name, &value, errp); } static void cpu_set_marchid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool dynamic_cpu = riscv_cpu_is_dynamic(obj); RISCVCPU *cpu = RISCV_CPU(obj); uint64_t prev_val = cpu->cfg.marchid; uint64_t value, invalid_val; uint32_t mxlen = 0; if (!visit_type_uint64(v, name, &value, errp)) { return; } if (!dynamic_cpu && prev_val != value) { error_setg(errp, "Unable to change %s marchid (0x%" PRIu64 ")", object_get_typename(obj), prev_val); return; } switch (riscv_cpu_mxl(&cpu->env)) { case MXL_RV32: mxlen = 32; break; case MXL_RV64: case MXL_RV128: mxlen = 64; break; default: g_assert_not_reached(); } invalid_val = 1LL << (mxlen - 1); if (value == invalid_val) { error_setg(errp, "Unable to set marchid with MSB (%u) bit set " "and the remaining bits zero", mxlen); return; } cpu->cfg.marchid = value; } static void cpu_get_marchid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { uint64_t value = RISCV_CPU(obj)->cfg.marchid; visit_type_uint64(v, name, &value, errp); } static void riscv_cpu_class_init(ObjectClass *c, void *data) { RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); CPUClass *cc = CPU_CLASS(c); DeviceClass *dc = DEVICE_CLASS(c); ResettableClass *rc = RESETTABLE_CLASS(c); device_class_set_parent_realize(dc, riscv_cpu_realize, &mcc->parent_realize); resettable_class_set_parent_phases(rc, NULL, riscv_cpu_reset_hold, NULL, &mcc->parent_phases); cc->class_by_name = riscv_cpu_class_by_name; cc->has_work = riscv_cpu_has_work; cc->dump_state = riscv_cpu_dump_state; cc->set_pc = riscv_cpu_set_pc; cc->get_pc = riscv_cpu_get_pc; cc->gdb_read_register = riscv_cpu_gdb_read_register; cc->gdb_write_register = riscv_cpu_gdb_write_register; cc->gdb_num_core_regs = 33; cc->gdb_stop_before_watchpoint = true; cc->disas_set_info = riscv_cpu_disas_set_info; #ifndef CONFIG_USER_ONLY cc->sysemu_ops = &riscv_sysemu_ops; cc->get_arch_id = riscv_get_arch_id; #endif cc->gdb_arch_name = riscv_gdb_arch_name; cc->gdb_get_dynamic_xml = riscv_gdb_get_dynamic_xml; object_class_property_add(c, "mvendorid", "uint32", cpu_get_mvendorid, cpu_set_mvendorid, NULL, NULL); object_class_property_add(c, "mimpid", "uint64", cpu_get_mimpid, cpu_set_mimpid, NULL, NULL); object_class_property_add(c, "marchid", "uint64", cpu_get_marchid, cpu_set_marchid, NULL, NULL); device_class_set_props(dc, riscv_cpu_properties); } static void riscv_isa_string_ext(RISCVCPU *cpu, char **isa_str, int max_str_len) { const RISCVIsaExtData *edata; char *old = *isa_str; char *new = *isa_str; for (edata = isa_edata_arr; edata && edata->name; edata++) { if (isa_ext_is_enabled(cpu, edata->ext_enable_offset)) { new = g_strconcat(old, "_", edata->name, NULL); g_free(old); old = new; } } *isa_str = new; } char *riscv_isa_string(RISCVCPU *cpu) { int i; const size_t maxlen = sizeof("rv128") + sizeof(riscv_single_letter_exts); char *isa_str = g_new(char, maxlen); char *p = isa_str + snprintf(isa_str, maxlen, "rv%d", TARGET_LONG_BITS); for (i = 0; i < sizeof(riscv_single_letter_exts) - 1; i++) { if (cpu->env.misa_ext & RV(riscv_single_letter_exts[i])) { *p++ = qemu_tolower(riscv_single_letter_exts[i]); } } *p = '\0'; if (!cpu->cfg.short_isa_string) { riscv_isa_string_ext(cpu, &isa_str, maxlen); } return isa_str; } #define DEFINE_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_CPU, \ .instance_init = initfn \ } #define DEFINE_DYNAMIC_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_DYNAMIC_CPU, \ .instance_init = initfn \ } #define DEFINE_VENDOR_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_VENDOR_CPU, \ .instance_init = initfn \ } #define DEFINE_BARE_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_BARE_CPU, \ .instance_init = initfn \ } static const TypeInfo riscv_cpu_type_infos[] = { { .name = TYPE_RISCV_CPU, .parent = TYPE_CPU, .instance_size = sizeof(RISCVCPU), .instance_align = __alignof(RISCVCPU), .instance_init = riscv_cpu_init, .instance_post_init = riscv_cpu_post_init, .abstract = true, .class_size = sizeof(RISCVCPUClass), .class_init = riscv_cpu_class_init, }, { .name = TYPE_RISCV_DYNAMIC_CPU, .parent = TYPE_RISCV_CPU, .abstract = true, }, { .name = TYPE_RISCV_VENDOR_CPU, .parent = TYPE_RISCV_CPU, .abstract = true, }, { .name = TYPE_RISCV_BARE_CPU, .parent = TYPE_RISCV_CPU, .abstract = true, }, DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_ANY, riscv_any_cpu_init), DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_MAX, riscv_max_cpu_init), #if defined(TARGET_RISCV32) DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE32, rv32_base_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_IBEX, rv32_ibex_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_SIFIVE_E31, rv32_sifive_e_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_SIFIVE_E34, rv32_imafcu_nommu_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_SIFIVE_U34, rv32_sifive_u_cpu_init), #elif defined(TARGET_RISCV64) DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE64, rv64_base_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_SIFIVE_E51, rv64_sifive_e_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_SIFIVE_U54, rv64_sifive_u_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_SHAKTI_C, rv64_sifive_u_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_THEAD_C906, rv64_thead_c906_cpu_init), DEFINE_VENDOR_CPU(TYPE_RISCV_CPU_VEYRON_V1, rv64_veyron_v1_cpu_init), DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE128, rv128_base_cpu_init), DEFINE_BARE_CPU(TYPE_RISCV_CPU_RV64I, rv64i_bare_cpu_init), #endif }; DEFINE_TYPES(riscv_cpu_type_infos)