/* * ARM TLB (Translation lookaside buffer) helpers. * * This code is licensed under the GNU GPL v2 or later. * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "qemu/osdep.h" #include "cpu.h" #include "internals.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" /* Return true if the translation regime is using LPAE format page tables */ bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { int el = regime_el(env, mmu_idx); if (el == 2 || arm_el_is_aa64(env, el)) { return true; } if (arm_feature(env, ARM_FEATURE_LPAE) && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { return true; } return false; } /* * Returns true if the stage 1 translation regime is using LPAE format page * tables. Used when raising alignment exceptions, whose FSR changes depending * on whether the long or short descriptor format is in use. */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { mmu_idx = stage_1_mmu_idx(mmu_idx); return regime_using_lpae_format(env, mmu_idx); } static inline uint32_t merge_syn_data_abort(uint32_t template_syn, unsigned int target_el, bool same_el, bool ea, bool s1ptw, bool is_write, int fsc) { uint32_t syn; /* * ISV is only set for data aborts routed to EL2 and * never for stage-1 page table walks faulting on stage 2. * * Furthermore, ISV is only set for certain kinds of load/stores. * If the template syndrome does not have ISV set, we should leave * it cleared. * * See ARMv8 specs, D7-1974: * ISS encoding for an exception from a Data Abort, the * ISV field. */ if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { syn = syn_data_abort_no_iss(same_el, 0, ea, 0, s1ptw, is_write, fsc); } else { /* * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template * syndrome created at translation time. * Now we create the runtime syndrome with the remaining fields. */ syn = syn_data_abort_with_iss(same_el, 0, 0, 0, 0, 0, ea, 0, s1ptw, is_write, fsc, true); /* Merge the runtime syndrome with the template syndrome. */ syn |= template_syn; } return syn; } static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi, int target_el, int mmu_idx, uint32_t *ret_fsc) { ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); uint32_t fsr, fsc; if (target_el == 2 || arm_el_is_aa64(env, target_el) || arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { /* * LPAE format fault status register : bottom 6 bits are * status code in the same form as needed for syndrome */ fsr = arm_fi_to_lfsc(fi); fsc = extract32(fsr, 0, 6); } else { fsr = arm_fi_to_sfsc(fi); /* * Short format FSR : this fault will never actually be reported * to an EL that uses a syndrome register. Use a (currently) * reserved FSR code in case the constructed syndrome does leak * into the guest somehow. */ fsc = 0x3f; } *ret_fsc = fsc; return fsr; } static G_NORETURN void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, ARMMMUFaultInfo *fi) { CPUARMState *env = &cpu->env; int target_el; bool same_el; uint32_t syn, exc, fsr, fsc; target_el = exception_target_el(env); if (fi->stage2) { target_el = 2; env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; if (arm_is_secure_below_el3(env) && fi->s1ns) { env->cp15.hpfar_el2 |= HPFAR_NS; } } same_el = (arm_current_el(env) == target_el); fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc); if (access_type == MMU_INST_FETCH) { syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); exc = EXCP_PREFETCH_ABORT; } else { syn = merge_syn_data_abort(env->exception.syndrome, target_el, same_el, fi->ea, fi->s1ptw, access_type == MMU_DATA_STORE, fsc); if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) { fsr |= (1 << 11); } exc = EXCP_DATA_ABORT; } env->exception.vaddress = addr; env->exception.fsr = fsr; raise_exception(env, exc, syn, target_el); } /* Raise a data fault alignment exception for the specified virtual address */ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { ARMCPU *cpu = ARM_CPU(cs); ARMMMUFaultInfo fi = {}; /* now we have a real cpu fault */ cpu_restore_state(cs, retaddr, true); fi.type = ARMFault_Alignment; arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); } void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc) { ARMMMUFaultInfo fi = { .type = ARMFault_Alignment }; int target_el = exception_target_el(env); int mmu_idx = cpu_mmu_index(env, true); uint32_t fsc; env->exception.vaddress = pc; /* * Note that the fsc is not applicable to this exception, * since any syndrome is pcalignment not insn_abort. */ env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc); raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el); } #if !defined(CONFIG_USER_ONLY) /* * arm_cpu_do_transaction_failed: handle a memory system error response * (eg "no device/memory present at address") by raising an external abort * exception */ void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { ARMCPU *cpu = ARM_CPU(cs); ARMMMUFaultInfo fi = {}; /* now we have a real cpu fault */ cpu_restore_state(cs, retaddr, true); fi.ea = arm_extabort_type(response); fi.type = ARMFault_SyncExternal; arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi); } bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { ARMCPU *cpu = ARM_CPU(cs); GetPhysAddrResult res = {}; ARMMMUFaultInfo local_fi, *fi; int ret; /* * Allow S1_ptw_translate to see any fault generated here. * Since this may recurse, read and clear. */ fi = cpu->env.tlb_fi; if (fi) { cpu->env.tlb_fi = NULL; } else { fi = memset(&local_fi, 0, sizeof(local_fi)); } /* * Walk the page table and (if the mapping exists) add the page * to the TLB. On success, return true. Otherwise, if probing, * return false. Otherwise populate fsr with ARM DFSR/IFSR fault * register format, and signal the fault. */ ret = get_phys_addr(&cpu->env, address, access_type, core_to_arm_mmu_idx(&cpu->env, mmu_idx), &res, fi); if (likely(!ret)) { /* * Map a single [sub]page. Regions smaller than our declared * target page size are handled specially, so for those we * pass in the exact addresses. */ if (res.f.lg_page_size >= TARGET_PAGE_BITS) { res.f.phys_addr &= TARGET_PAGE_MASK; address &= TARGET_PAGE_MASK; } res.f.pte_attrs = res.cacheattrs.attrs; res.f.shareability = res.cacheattrs.shareability; tlb_set_page_full(cs, mmu_idx, address, &res.f); return true; } else if (probe) { return false; } else { /* now we have a real cpu fault */ cpu_restore_state(cs, retaddr, true); arm_deliver_fault(cpu, address, access_type, mmu_idx, fi); } } #else void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr, MMUAccessType access_type, bool maperr, uintptr_t ra) { ARMMMUFaultInfo fi = { .type = maperr ? ARMFault_Translation : ARMFault_Permission, .level = 3, }; ARMCPU *cpu = ARM_CPU(cs); /* * We report both ESR and FAR to signal handlers. * For now, it's easiest to deliver the fault normally. */ cpu_restore_state(cs, ra, true); arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi); } void arm_cpu_record_sigbus(CPUState *cs, vaddr addr, MMUAccessType access_type, uintptr_t ra) { arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra); } #endif /* !defined(CONFIG_USER_ONLY) */