/* * QEMU Executable loader * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * Gunzip functionality in this file is derived from u-boot: * * (C) Copyright 2008 Semihalf * * (C) Copyright 2000-2005 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "hw.h" #include "disas.h" #include "monitor.h" #include "sysemu.h" #include "uboot_image.h" #include "loader.h" #include static int roms_loaded; /* return the size or -1 if error */ int get_image_size(const char *filename) { int fd, size; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = lseek(fd, 0, SEEK_END); close(fd); return size; } /* return the size or -1 if error */ /* deprecated, because caller does not specify buffer size! */ int load_image(const char *filename, uint8_t *addr) { int fd, size; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_SET); if (read(fd, addr, size) != size) { close(fd); return -1; } close(fd); return size; } /* read()-like version */ int read_targphys(const char *name, int fd, target_phys_addr_t dst_addr, size_t nbytes) { uint8_t *buf; size_t did; buf = qemu_malloc(nbytes); did = read(fd, buf, nbytes); if (did > 0) rom_add_blob_fixed("read", buf, did, dst_addr); qemu_free(buf); return did; } /* return the size or -1 if error */ int load_image_targphys(const char *filename, target_phys_addr_t addr, int max_sz) { int size; size = get_image_size(filename); if (size > 0) rom_add_file_fixed(filename, addr); return size; } void pstrcpy_targphys(const char *name, target_phys_addr_t dest, int buf_size, const char *source) { const char *nulp; char *ptr; if (buf_size <= 0) return; nulp = memchr(source, 0, buf_size); if (nulp) { rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); } else { rom_add_blob_fixed(name, source, buf_size, dest); ptr = rom_ptr(dest + buf_size - 1); *ptr = 0; } } /* A.OUT loader */ struct exec { uint32_t a_info; /* Use macros N_MAGIC, etc for access */ uint32_t a_text; /* length of text, in bytes */ uint32_t a_data; /* length of data, in bytes */ uint32_t a_bss; /* length of uninitialized data area, in bytes */ uint32_t a_syms; /* length of symbol table data in file, in bytes */ uint32_t a_entry; /* start address */ uint32_t a_trsize; /* length of relocation info for text, in bytes */ uint32_t a_drsize; /* length of relocation info for data, in bytes */ }; static void bswap_ahdr(struct exec *e) { bswap32s(&e->a_info); bswap32s(&e->a_text); bswap32s(&e->a_data); bswap32s(&e->a_bss); bswap32s(&e->a_syms); bswap32s(&e->a_entry); bswap32s(&e->a_trsize); bswap32s(&e->a_drsize); } #define N_MAGIC(exec) ((exec).a_info & 0xffff) #define OMAGIC 0407 #define NMAGIC 0410 #define ZMAGIC 0413 #define QMAGIC 0314 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) #define N_TXTOFF(x) \ (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) #define N_DATADDR(x, target_page_size) \ (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) int load_aout(const char *filename, target_phys_addr_t addr, int max_sz, int bswap_needed, target_phys_addr_t target_page_size) { int fd, size, ret; struct exec e; uint32_t magic; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = read(fd, &e, sizeof(e)); if (size < 0) goto fail; if (bswap_needed) { bswap_ahdr(&e); } magic = N_MAGIC(e); switch (magic) { case ZMAGIC: case QMAGIC: case OMAGIC: if (e.a_text + e.a_data > max_sz) goto fail; lseek(fd, N_TXTOFF(e), SEEK_SET); size = read_targphys(filename, fd, addr, e.a_text + e.a_data); if (size < 0) goto fail; break; case NMAGIC: if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) goto fail; lseek(fd, N_TXTOFF(e), SEEK_SET); size = read_targphys(filename, fd, addr, e.a_text); if (size < 0) goto fail; ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), e.a_data); if (ret < 0) goto fail; size += ret; break; default: goto fail; } close(fd); return size; fail: close(fd); return -1; } /* ELF loader */ static void *load_at(int fd, int offset, int size) { void *ptr; if (lseek(fd, offset, SEEK_SET) < 0) return NULL; ptr = qemu_malloc(size); if (read(fd, ptr, size) != size) { qemu_free(ptr); return NULL; } return ptr; } #ifdef ELF_CLASS #undef ELF_CLASS #endif #define ELF_CLASS ELFCLASS32 #include "elf.h" #define SZ 32 #define elf_word uint32_t #define elf_sword int32_t #define bswapSZs bswap32s #include "elf_ops.h" #undef elfhdr #undef elf_phdr #undef elf_shdr #undef elf_sym #undef elf_note #undef elf_word #undef elf_sword #undef bswapSZs #undef SZ #define elfhdr elf64_hdr #define elf_phdr elf64_phdr #define elf_note elf64_note #define elf_shdr elf64_shdr #define elf_sym elf64_sym #define elf_word uint64_t #define elf_sword int64_t #define bswapSZs bswap64s #define SZ 64 #include "elf_ops.h" /* return < 0 if error, otherwise the number of bytes loaded in memory */ int load_elf(const char *filename, int64_t address_offset, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, int big_endian, int elf_machine, int clear_lsb) { int fd, data_order, target_data_order, must_swab, ret; uint8_t e_ident[EI_NIDENT]; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) { perror(filename); return -1; } if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) goto fail; if (e_ident[0] != ELFMAG0 || e_ident[1] != ELFMAG1 || e_ident[2] != ELFMAG2 || e_ident[3] != ELFMAG3) goto fail; #ifdef HOST_WORDS_BIGENDIAN data_order = ELFDATA2MSB; #else data_order = ELFDATA2LSB; #endif must_swab = data_order != e_ident[EI_DATA]; if (big_endian) { target_data_order = ELFDATA2MSB; } else { target_data_order = ELFDATA2LSB; } if (target_data_order != e_ident[EI_DATA]) return -1; lseek(fd, 0, SEEK_SET); if (e_ident[EI_CLASS] == ELFCLASS64) { ret = load_elf64(filename, fd, address_offset, must_swab, pentry, lowaddr, highaddr, elf_machine, clear_lsb); } else { ret = load_elf32(filename, fd, address_offset, must_swab, pentry, lowaddr, highaddr, elf_machine, clear_lsb); } close(fd); return ret; fail: close(fd); return -1; } static void bswap_uboot_header(uboot_image_header_t *hdr) { #ifndef HOST_WORDS_BIGENDIAN bswap32s(&hdr->ih_magic); bswap32s(&hdr->ih_hcrc); bswap32s(&hdr->ih_time); bswap32s(&hdr->ih_size); bswap32s(&hdr->ih_load); bswap32s(&hdr->ih_ep); bswap32s(&hdr->ih_dcrc); #endif } #define ZALLOC_ALIGNMENT 16 static void *zalloc(void *x, unsigned items, unsigned size) { void *p; size *= items; size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); p = qemu_malloc(size); return (p); } static void zfree(void *x, void *addr) { qemu_free(addr); } #define HEAD_CRC 2 #define EXTRA_FIELD 4 #define ORIG_NAME 8 #define COMMENT 0x10 #define RESERVED 0xe0 #define DEFLATED 8 /* This is the maximum in uboot, so if a uImage overflows this, it would * overflow on real hardware too. */ #define UBOOT_MAX_GUNZIP_BYTES 0x800000 static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) { z_stream s; ssize_t dstbytes; int r, i, flags; /* skip header */ i = 10; flags = src[3]; if (src[2] != DEFLATED || (flags & RESERVED) != 0) { puts ("Error: Bad gzipped data\n"); return -1; } if ((flags & EXTRA_FIELD) != 0) i = 12 + src[10] + (src[11] << 8); if ((flags & ORIG_NAME) != 0) while (src[i++] != 0) ; if ((flags & COMMENT) != 0) while (src[i++] != 0) ; if ((flags & HEAD_CRC) != 0) i += 2; if (i >= srclen) { puts ("Error: gunzip out of data in header\n"); return -1; } s.zalloc = zalloc; s.zfree = zfree; r = inflateInit2(&s, -MAX_WBITS); if (r != Z_OK) { printf ("Error: inflateInit2() returned %d\n", r); return (-1); } s.next_in = src + i; s.avail_in = srclen - i; s.next_out = dst; s.avail_out = dstlen; r = inflate(&s, Z_FINISH); if (r != Z_OK && r != Z_STREAM_END) { printf ("Error: inflate() returned %d\n", r); return -1; } dstbytes = s.next_out - (unsigned char *) dst; inflateEnd(&s); return dstbytes; } /* Load a U-Boot image. */ int load_uimage(const char *filename, target_phys_addr_t *ep, target_phys_addr_t *loadaddr, int *is_linux) { int fd; int size; uboot_image_header_t h; uboot_image_header_t *hdr = &h; uint8_t *data = NULL; int ret = -1; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = read(fd, hdr, sizeof(uboot_image_header_t)); if (size < 0) goto out; bswap_uboot_header(hdr); if (hdr->ih_magic != IH_MAGIC) goto out; /* TODO: Implement other image types. */ if (hdr->ih_type != IH_TYPE_KERNEL) { fprintf(stderr, "Can only load u-boot image type \"kernel\"\n"); goto out; } switch (hdr->ih_comp) { case IH_COMP_NONE: case IH_COMP_GZIP: break; default: fprintf(stderr, "Unable to load u-boot images with compression type %d\n", hdr->ih_comp); goto out; } /* TODO: Check CPU type. */ if (is_linux) { if (hdr->ih_os == IH_OS_LINUX) *is_linux = 1; else *is_linux = 0; } *ep = hdr->ih_ep; data = qemu_malloc(hdr->ih_size); if (read(fd, data, hdr->ih_size) != hdr->ih_size) { fprintf(stderr, "Error reading file\n"); goto out; } if (hdr->ih_comp == IH_COMP_GZIP) { uint8_t *compressed_data; size_t max_bytes; ssize_t bytes; compressed_data = data; max_bytes = UBOOT_MAX_GUNZIP_BYTES; data = qemu_malloc(max_bytes); bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); qemu_free(compressed_data); if (bytes < 0) { fprintf(stderr, "Unable to decompress gzipped image!\n"); goto out; } hdr->ih_size = bytes; } rom_add_blob_fixed(filename, data, hdr->ih_size, hdr->ih_load); if (loadaddr) *loadaddr = hdr->ih_load; ret = hdr->ih_size; out: if (data) qemu_free(data); close(fd); return ret; } /* * Functions for reboot-persistent memory regions. * - used for vga bios and option roms. * - also linux kernel (-kernel / -initrd). */ typedef struct Rom Rom; struct Rom { char *name; char *path; size_t romsize; uint8_t *data; int align; int isrom; target_phys_addr_t min; target_phys_addr_t max; target_phys_addr_t addr; QTAILQ_ENTRY(Rom) next; }; static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); int rom_enable_driver_roms; static void rom_insert(Rom *rom) { Rom *item; if (roms_loaded) { hw_error ("ROM images must be loaded at startup\n"); } /* list is ordered by load address */ QTAILQ_FOREACH(item, &roms, next) { if (rom->min >= item->min) continue; QTAILQ_INSERT_BEFORE(item, rom, next); return; } QTAILQ_INSERT_TAIL(&roms, rom, next); } int rom_add_file(const char *file, target_phys_addr_t min, target_phys_addr_t max, int align) { Rom *rom; int rc, fd = -1; rom = qemu_mallocz(sizeof(*rom)); rom->name = qemu_strdup(file); rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); if (rom->path == NULL) { rom->path = qemu_strdup(file); } fd = open(rom->path, O_RDONLY | O_BINARY); if (fd == -1) { fprintf(stderr, "Could not open option rom '%s': %s\n", rom->path, strerror(errno)); goto err; } rom->align = align; rom->min = min; rom->max = max; rom->romsize = lseek(fd, 0, SEEK_END); rom->data = qemu_mallocz(rom->romsize); lseek(fd, 0, SEEK_SET); rc = read(fd, rom->data, rom->romsize); if (rc != rom->romsize) { fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", rom->name, rc, rom->romsize); goto err; } close(fd); rom_insert(rom); return 0; err: if (fd != -1) close(fd); qemu_free(rom->data); qemu_free(rom->path); qemu_free(rom->name); qemu_free(rom); return -1; } int rom_add_blob(const char *name, const void *blob, size_t len, target_phys_addr_t min, target_phys_addr_t max, int align) { Rom *rom; rom = qemu_mallocz(sizeof(*rom)); rom->name = qemu_strdup(name); rom->align = align; rom->min = min; rom->max = max; rom->romsize = len; rom->data = qemu_mallocz(rom->romsize); memcpy(rom->data, blob, len); rom_insert(rom); return 0; } int rom_add_vga(const char *file) { if (!rom_enable_driver_roms) return 0; return rom_add_file(file, PC_ROM_MIN_VGA, PC_ROM_MAX, PC_ROM_ALIGN); } int rom_add_option(const char *file) { if (!rom_enable_driver_roms) return 0; return rom_add_file(file, PC_ROM_MIN_OPTION, PC_ROM_MAX, PC_ROM_ALIGN); } static void rom_reset(void *unused) { Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (rom->data == NULL) continue; cpu_physical_memory_write_rom(rom->addr, rom->data, rom->romsize); if (rom->isrom) { /* rom needs to be written only once */ qemu_free(rom->data); rom->data = NULL; } } } int rom_load_all(void) { target_phys_addr_t addr = 0; int memtype; Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (addr < rom->min) addr = rom->min; if (rom->max) { /* load address range */ if (rom->align) { addr += (rom->align-1); addr &= ~(rom->align-1); } if (addr + rom->romsize > rom->max) { fprintf(stderr, "rom: out of memory (rom %s, " "addr 0x" TARGET_FMT_plx ", size 0x%zx, max 0x" TARGET_FMT_plx ")\n", rom->name, addr, rom->romsize, rom->max); return -1; } } else { /* fixed address requested */ if (addr != rom->min) { fprintf(stderr, "rom: requested regions overlap " "(rom %s. free=0x" TARGET_FMT_plx ", addr=0x" TARGET_FMT_plx ")\n", rom->name, addr, rom->min); return -1; } } rom->addr = addr; addr += rom->romsize; memtype = cpu_get_physical_page_desc(rom->addr) & (3 << IO_MEM_SHIFT); if (memtype == IO_MEM_ROM) rom->isrom = 1; } qemu_register_reset(rom_reset, NULL); roms_loaded = 1; return 0; } static Rom *find_rom(target_phys_addr_t addr) { Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (rom->max) continue; if (rom->min > addr) continue; if (rom->min + rom->romsize < addr) continue; return rom; } return NULL; } int rom_copy(uint8_t *dest, target_phys_addr_t addr, size_t size) { target_phys_addr_t end = addr + size; uint8_t *s, *d = dest; size_t l = 0; Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (rom->max) continue; if (rom->min + rom->romsize < addr) continue; if (rom->min > end) break; if (!rom->data) continue; d = dest + (rom->min - addr); s = rom->data; l = rom->romsize; if (rom->min < addr) { d = dest; s += (addr - rom->min); l -= (addr - rom->min); } if ((d + l) > (dest + size)) { l = dest - d; } memcpy(d, s, l); } return (d + l) - dest; } void *rom_ptr(target_phys_addr_t addr) { Rom *rom; rom = find_rom(addr); if (!rom || !rom->data) return NULL; return rom->data + (addr - rom->min); } void do_info_roms(Monitor *mon) { Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { monitor_printf(mon, "addr=" TARGET_FMT_plx " size=0x%06zx mem=%s name=\"%s\" \n", rom->addr, rom->romsize, rom->isrom ? "rom" : "ram", rom->name); } }