/* * S/390 misc helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "exec/memory.h" #include "qemu/host-utils.h" #include "helper.h" #include #include "sysemu/kvm.h" #include "qemu/timer.h" #ifdef CONFIG_KVM #include #endif #if !defined(CONFIG_USER_ONLY) #include "exec/softmmu_exec.h" #include "sysemu/sysemu.h" #endif /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif /* Raise an exception dynamically from a helper function. */ void QEMU_NORETURN runtime_exception(CPUS390XState *env, int excp, uintptr_t retaddr) { int t; env->exception_index = EXCP_PGM; env->int_pgm_code = excp; /* Use the (ultimate) callers address to find the insn that trapped. */ cpu_restore_state(env, retaddr); /* Advance past the insn. */ t = cpu_ldub_code(env, env->psw.addr); env->int_pgm_ilen = t = get_ilen(t); env->psw.addr += 2 * t; cpu_loop_exit(env); } /* Raise an exception statically from a TB. */ void HELPER(exception)(CPUS390XState *env, uint32_t excp) { HELPER_LOG("%s: exception %d\n", __func__, excp); env->exception_index = excp; cpu_loop_exit(env); } #ifndef CONFIG_USER_ONLY void program_interrupt(CPUS390XState *env, uint32_t code, int ilen) { qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", env->psw.addr); if (kvm_enabled()) { #ifdef CONFIG_KVM kvm_s390_interrupt(s390_env_get_cpu(env), KVM_S390_PROGRAM_INT, code); #endif } else { env->int_pgm_code = code; env->int_pgm_ilen = ilen; env->exception_index = EXCP_PGM; cpu_loop_exit(env); } } /* SCLP service call */ uint32_t HELPER(servc)(CPUS390XState *env, uint32_t r1, uint64_t r2) { int r; r = sclp_service_call(r1, r2); if (r < 0) { program_interrupt(env, -r, 4); return 0; } return r; } /* DIAG */ uint64_t HELPER(diag)(CPUS390XState *env, uint32_t num, uint64_t mem, uint64_t code) { uint64_t r; switch (num) { case 0x500: /* KVM hypercall */ r = s390_virtio_hypercall(env, mem, code); break; case 0x44: /* yield */ r = 0; break; case 0x308: /* ipl */ r = 0; break; default: r = -1; break; } if (r) { program_interrupt(env, PGM_OPERATION, ILEN_LATER_INC); } return r; } /* Set Prefix */ void HELPER(spx)(CPUS390XState *env, uint64_t a1) { uint32_t prefix = a1 & 0x7fffe000; env->psa = prefix; qemu_log("prefix: %#x\n", prefix); tlb_flush_page(env, 0); tlb_flush_page(env, TARGET_PAGE_SIZE); } static inline uint64_t clock_value(CPUS390XState *env) { uint64_t time; time = env->tod_offset + time2tod(qemu_get_clock_ns(vm_clock) - env->tod_basetime); return time; } /* Store Clock */ uint64_t HELPER(stck)(CPUS390XState *env) { return clock_value(env); } /* Set Clock Comparator */ void HELPER(sckc)(CPUS390XState *env, uint64_t time) { if (time == -1ULL) { return; } /* difference between now and then */ time -= clock_value(env); /* nanoseconds */ time = (time * 125) >> 9; qemu_mod_timer(env->tod_timer, qemu_get_clock_ns(vm_clock) + time); } /* Store Clock Comparator */ uint64_t HELPER(stckc)(CPUS390XState *env) { /* XXX implement */ return 0; } /* Set CPU Timer */ void HELPER(spt)(CPUS390XState *env, uint64_t time) { if (time == -1ULL) { return; } /* nanoseconds */ time = (time * 125) >> 9; qemu_mod_timer(env->cpu_timer, qemu_get_clock_ns(vm_clock) + time); } /* Store CPU Timer */ uint64_t HELPER(stpt)(CPUS390XState *env) { /* XXX implement */ return 0; } /* Store System Information */ uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0, uint32_t r0, uint32_t r1) { int cc = 0; int sel1, sel2; if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 && ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) { /* valid function code, invalid reserved bits */ program_interrupt(env, PGM_SPECIFICATION, 2); } sel1 = r0 & STSI_R0_SEL1_MASK; sel2 = r1 & STSI_R1_SEL2_MASK; /* XXX: spec exception if sysib is not 4k-aligned */ switch (r0 & STSI_LEVEL_MASK) { case STSI_LEVEL_1: if ((sel1 == 1) && (sel2 == 1)) { /* Basic Machine Configuration */ struct sysib_111 sysib; memset(&sysib, 0, sizeof(sysib)); ebcdic_put(sysib.manuf, "QEMU ", 16); /* same as machine type number in STORE CPU ID */ ebcdic_put(sysib.type, "QEMU", 4); /* same as model number in STORE CPU ID */ ebcdic_put(sysib.model, "QEMU ", 16); ebcdic_put(sysib.sequence, "QEMU ", 16); ebcdic_put(sysib.plant, "QEMU", 4); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else if ((sel1 == 2) && (sel2 == 1)) { /* Basic Machine CPU */ struct sysib_121 sysib; memset(&sysib, 0, sizeof(sysib)); /* XXX make different for different CPUs? */ ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.plant, "QEMU", 4); stw_p(&sysib.cpu_addr, env->cpu_num); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else if ((sel1 == 2) && (sel2 == 2)) { /* Basic Machine CPUs */ struct sysib_122 sysib; memset(&sysib, 0, sizeof(sysib)); stl_p(&sysib.capability, 0x443afc29); /* XXX change when SMP comes */ stw_p(&sysib.total_cpus, 1); stw_p(&sysib.active_cpus, 1); stw_p(&sysib.standby_cpus, 0); stw_p(&sysib.reserved_cpus, 0); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else { cc = 3; } break; case STSI_LEVEL_2: { if ((sel1 == 2) && (sel2 == 1)) { /* LPAR CPU */ struct sysib_221 sysib; memset(&sysib, 0, sizeof(sysib)); /* XXX make different for different CPUs? */ ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.plant, "QEMU", 4); stw_p(&sysib.cpu_addr, env->cpu_num); stw_p(&sysib.cpu_id, 0); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else if ((sel1 == 2) && (sel2 == 2)) { /* LPAR CPUs */ struct sysib_222 sysib; memset(&sysib, 0, sizeof(sysib)); stw_p(&sysib.lpar_num, 0); sysib.lcpuc = 0; /* XXX change when SMP comes */ stw_p(&sysib.total_cpus, 1); stw_p(&sysib.conf_cpus, 1); stw_p(&sysib.standby_cpus, 0); stw_p(&sysib.reserved_cpus, 0); ebcdic_put(sysib.name, "QEMU ", 8); stl_p(&sysib.caf, 1000); stw_p(&sysib.dedicated_cpus, 0); stw_p(&sysib.shared_cpus, 0); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else { cc = 3; } break; } case STSI_LEVEL_3: { if ((sel1 == 2) && (sel2 == 2)) { /* VM CPUs */ struct sysib_322 sysib; memset(&sysib, 0, sizeof(sysib)); sysib.count = 1; /* XXX change when SMP comes */ stw_p(&sysib.vm[0].total_cpus, 1); stw_p(&sysib.vm[0].conf_cpus, 1); stw_p(&sysib.vm[0].standby_cpus, 0); stw_p(&sysib.vm[0].reserved_cpus, 0); ebcdic_put(sysib.vm[0].name, "KVMguest", 8); stl_p(&sysib.vm[0].caf, 1000); ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else { cc = 3; } break; } case STSI_LEVEL_CURRENT: env->regs[0] = STSI_LEVEL_3; break; default: cc = 3; break; } return cc; } uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1, uint64_t cpu_addr) { int cc = 0; HELPER_LOG("%s: %016" PRIx64 " %08x %016" PRIx64 "\n", __func__, order_code, r1, cpu_addr); /* Remember: Use "R1 or R1 + 1, whichever is the odd-numbered register" as parameter (input). Status (output) is always R1. */ switch (order_code) { case SIGP_SET_ARCH: /* switch arch */ break; case SIGP_SENSE: /* enumerate CPU status */ if (cpu_addr) { /* XXX implement when SMP comes */ return 3; } env->regs[r1] &= 0xffffffff00000000ULL; cc = 1; break; #if !defined(CONFIG_USER_ONLY) case SIGP_RESTART: qemu_system_reset_request(); cpu_loop_exit(env); break; case SIGP_STOP: qemu_system_shutdown_request(); cpu_loop_exit(env); break; #endif default: /* unknown sigp */ fprintf(stderr, "XXX unknown sigp: 0x%" PRIx64 "\n", order_code); cc = 3; } return cc; } #endif