/* * qemu user cpu loop * * Copyright (c) 2003-2008 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "user-internals.h" #include "elf.h" #include "cpu_loop-common.h" #include "signal-common.h" #include "semihosting/common-semi.h" #include "target/arm/syndrome.h" #define get_user_code_u32(x, gaddr, env) \ ({ abi_long __r = get_user_u32((x), (gaddr)); \ if (!__r && bswap_code(arm_sctlr_b(env))) { \ (x) = bswap32(x); \ } \ __r; \ }) #define get_user_code_u16(x, gaddr, env) \ ({ abi_long __r = get_user_u16((x), (gaddr)); \ if (!__r && bswap_code(arm_sctlr_b(env))) { \ (x) = bswap16(x); \ } \ __r; \ }) #define get_user_data_u32(x, gaddr, env) \ ({ abi_long __r = get_user_u32((x), (gaddr)); \ if (!__r && arm_cpu_bswap_data(env)) { \ (x) = bswap32(x); \ } \ __r; \ }) #define get_user_data_u16(x, gaddr, env) \ ({ abi_long __r = get_user_u16((x), (gaddr)); \ if (!__r && arm_cpu_bswap_data(env)) { \ (x) = bswap16(x); \ } \ __r; \ }) #define put_user_data_u32(x, gaddr, env) \ ({ typeof(x) __x = (x); \ if (arm_cpu_bswap_data(env)) { \ __x = bswap32(__x); \ } \ put_user_u32(__x, (gaddr)); \ }) #define put_user_data_u16(x, gaddr, env) \ ({ typeof(x) __x = (x); \ if (arm_cpu_bswap_data(env)) { \ __x = bswap16(__x); \ } \ put_user_u16(__x, (gaddr)); \ }) /* * Similar to code in accel/tcg/user-exec.c, but outside the execution loop. * Must be called with mmap_lock. * We get the PC of the entry address - which is as good as anything, * on a real kernel what you get depends on which mode it uses. */ static void *atomic_mmu_lookup(CPUArchState *env, uint32_t addr, int size) { int need_flags = PAGE_READ | PAGE_WRITE_ORG | PAGE_VALID; int page_flags; /* Enforce guest required alignment. */ if (unlikely(addr & (size - 1))) { force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); return NULL; } page_flags = page_get_flags(addr); if (unlikely((page_flags & need_flags) != need_flags)) { force_sig_fault(TARGET_SIGSEGV, page_flags & PAGE_VALID ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR, addr); return NULL; } return g2h(env_cpu(env), addr); } /* * See the Linux kernel's Documentation/arm/kernel_user_helpers.rst * Input: * r0 = oldval * r1 = newval * r2 = pointer to target value * * Output: * r0 = 0 if *ptr was changed, non-0 if no exchange happened * C set if *ptr was changed, clear if no exchange happened */ static void arm_kernel_cmpxchg32_helper(CPUARMState *env) { uint32_t oldval, newval, val, addr, cpsr, *host_addr; oldval = env->regs[0]; newval = env->regs[1]; addr = env->regs[2]; mmap_lock(); host_addr = atomic_mmu_lookup(env, addr, 4); if (!host_addr) { mmap_unlock(); return; } val = qatomic_cmpxchg__nocheck(host_addr, oldval, newval); mmap_unlock(); cpsr = (val == oldval) * CPSR_C; cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); env->regs[0] = cpsr ? 0 : -1; } /* * See the Linux kernel's Documentation/arm/kernel_user_helpers.rst * Input: * r0 = pointer to oldval * r1 = pointer to newval * r2 = pointer to target value * * Output: * r0 = 0 if *ptr was changed, non-0 if no exchange happened * C set if *ptr was changed, clear if no exchange happened * * Note segv's in kernel helpers are a bit tricky, we can set the * data address sensibly but the PC address is just the entry point. */ static void arm_kernel_cmpxchg64_helper(CPUARMState *env) { uint64_t oldval, newval, val; uint32_t addr, cpsr; uint64_t *host_addr; addr = env->regs[0]; if (get_user_u64(oldval, addr)) { goto segv; } addr = env->regs[1]; if (get_user_u64(newval, addr)) { goto segv; } mmap_lock(); addr = env->regs[2]; host_addr = atomic_mmu_lookup(env, addr, 8); if (!host_addr) { mmap_unlock(); return; } #ifdef CONFIG_ATOMIC64 val = qatomic_cmpxchg__nocheck(host_addr, oldval, newval); cpsr = (val == oldval) * CPSR_C; #else /* * This only works between threads, not between processes, but since * the host has no 64-bit cmpxchg, it is the best that we can do. */ start_exclusive(); val = *host_addr; if (val == oldval) { *host_addr = newval; cpsr = CPSR_C; } else { cpsr = 0; } end_exclusive(); #endif mmap_unlock(); cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); env->regs[0] = cpsr ? 0 : -1; return; segv: force_sig_fault(TARGET_SIGSEGV, page_get_flags(addr) & PAGE_VALID ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR, addr); } /* Handle a jump to the kernel code page. */ static int do_kernel_trap(CPUARMState *env) { uint32_t addr; switch (env->regs[15]) { case 0xffff0fa0: /* __kernel_memory_barrier */ smp_mb(); break; case 0xffff0fc0: /* __kernel_cmpxchg */ arm_kernel_cmpxchg32_helper(env); break; case 0xffff0fe0: /* __kernel_get_tls */ env->regs[0] = cpu_get_tls(env); break; case 0xffff0f60: /* __kernel_cmpxchg64 */ arm_kernel_cmpxchg64_helper(env); break; default: return 1; } /* Jump back to the caller. */ addr = env->regs[14]; if (addr & 1) { env->thumb = 1; addr &= ~1; } env->regs[15] = addr; return 0; } static bool insn_is_linux_bkpt(uint32_t opcode, bool is_thumb) { /* * Return true if this insn is one of the three magic UDF insns * which the kernel treats as breakpoint insns. */ if (!is_thumb) { return (opcode & 0x0fffffff) == 0x07f001f0; } else { /* * Note that we get the two halves of the 32-bit T32 insn * in the opposite order to the value the kernel uses in * its undef_hook struct. */ return ((opcode & 0xffff) == 0xde01) || (opcode == 0xa000f7f0); } } static bool emulate_arm_fpa11(CPUARMState *env, uint32_t opcode) { TaskState *ts = env_cpu(env)->opaque; int rc = EmulateAll(opcode, &ts->fpa, env); int raise, enabled; if (rc == 0) { /* Illegal instruction */ return false; } if (rc > 0) { /* Everything ok. */ env->regs[15] += 4; return true; } /* FP exception */ rc = -rc; raise = 0; /* Translate softfloat flags to FPSR flags */ if (rc & float_flag_invalid) { raise |= BIT_IOC; } if (rc & float_flag_divbyzero) { raise |= BIT_DZC; } if (rc & float_flag_overflow) { raise |= BIT_OFC; } if (rc & float_flag_underflow) { raise |= BIT_UFC; } if (rc & float_flag_inexact) { raise |= BIT_IXC; } /* Accumulate unenabled exceptions */ enabled = ts->fpa.fpsr >> 16; ts->fpa.fpsr |= raise & ~enabled; if (raise & enabled) { /* * The kernel's nwfpe emulator does not pass a real si_code. * It merely uses send_sig(SIGFPE, current, 1), which results in * __send_signal() filling out SI_KERNEL with pid and uid 0 (under * the "SEND_SIG_PRIV" case). That's what our force_sig() does. */ force_sig(TARGET_SIGFPE); } else { env->regs[15] += 4; } return true; } void cpu_loop(CPUARMState *env) { CPUState *cs = env_cpu(env); int trapnr, si_signo, si_code; unsigned int n, insn; abi_ulong ret; for(;;) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch(trapnr) { case EXCP_UDEF: case EXCP_NOCP: case EXCP_INVSTATE: { uint32_t opcode; /* we handle the FPU emulation here, as Linux */ /* we get the opcode */ /* FIXME - what to do if get_user() fails? */ get_user_code_u32(opcode, env->regs[15], env); /* * The Linux kernel treats some UDF patterns specially * to use as breakpoints (instead of the architectural * bkpt insn). These should trigger a SIGTRAP rather * than SIGILL. */ if (insn_is_linux_bkpt(opcode, env->thumb)) { goto excp_debug; } if (!env->thumb && emulate_arm_fpa11(env, opcode)) { break; } force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->regs[15]); } break; case EXCP_SWI: { env->eabi = 1; /* system call */ if (env->thumb) { /* Thumb is always EABI style with syscall number in r7 */ n = env->regs[7]; } else { /* * Equivalent of kernel CONFIG_OABI_COMPAT: read the * Arm SVC insn to extract the immediate, which is the * syscall number in OABI. */ /* FIXME - what to do if get_user() fails? */ get_user_code_u32(insn, env->regs[15] - 4, env); n = insn & 0xffffff; if (n == 0) { /* zero immediate: EABI, syscall number in r7 */ n = env->regs[7]; } else { /* * This XOR matches the kernel code: an immediate * in the valid range (0x900000 .. 0x9fffff) is * converted into the correct EABI-style syscall * number; invalid immediates end up as values * > 0xfffff and are handled below as out-of-range. */ n ^= ARM_SYSCALL_BASE; env->eabi = 0; } } if (n > ARM_NR_BASE) { switch (n) { case ARM_NR_cacheflush: /* nop */ break; case ARM_NR_set_tls: cpu_set_tls(env, env->regs[0]); env->regs[0] = 0; break; case ARM_NR_breakpoint: env->regs[15] -= env->thumb ? 2 : 4; goto excp_debug; case ARM_NR_get_tls: env->regs[0] = cpu_get_tls(env); break; default: if (n < 0xf0800) { /* * Syscalls 0xf0000..0xf07ff (or 0x9f0000.. * 0x9f07ff in OABI numbering) are defined * to return -ENOSYS rather than raising * SIGILL. Note that we have already * removed the 0x900000 prefix. */ qemu_log_mask(LOG_UNIMP, "qemu: Unsupported ARM syscall: 0x%x\n", n); env->regs[0] = -TARGET_ENOSYS; } else { /* * Otherwise SIGILL. This includes any SWI with * immediate not originally 0x9fxxxx, because * of the earlier XOR. * Like the real kernel, we report the addr of the * SWI in the siginfo si_addr but leave the PC * pointing at the insn after the SWI. */ abi_ulong faultaddr = env->regs[15]; faultaddr -= env->thumb ? 2 : 4; force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLTRP, faultaddr); } break; } } else { ret = do_syscall(env, n, env->regs[0], env->regs[1], env->regs[2], env->regs[3], env->regs[4], env->regs[5], 0, 0); if (ret == -QEMU_ERESTARTSYS) { env->regs[15] -= env->thumb ? 2 : 4; } else if (ret != -QEMU_ESIGRETURN) { env->regs[0] = ret; } } } break; case EXCP_SEMIHOST: env->regs[0] = do_common_semihosting(cs); env->regs[15] += env->thumb ? 2 : 4; break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: /* For user-only we don't set TTBCR_EAE, so look at the FSR. */ switch (env->exception.fsr & 0x1f) { case 0x1: /* Alignment */ si_signo = TARGET_SIGBUS; si_code = TARGET_BUS_ADRALN; break; case 0x3: /* Access flag fault, level 1 */ case 0x6: /* Access flag fault, level 2 */ case 0x9: /* Domain fault, level 1 */ case 0xb: /* Domain fault, level 2 */ case 0xd: /* Permission fault, level 1 */ case 0xf: /* Permission fault, level 2 */ si_signo = TARGET_SIGSEGV; si_code = TARGET_SEGV_ACCERR; break; case 0x5: /* Translation fault, level 1 */ case 0x7: /* Translation fault, level 2 */ si_signo = TARGET_SIGSEGV; si_code = TARGET_SEGV_MAPERR; break; default: g_assert_not_reached(); } force_sig_fault(si_signo, si_code, env->exception.vaddress); break; case EXCP_DEBUG: case EXCP_BKPT: excp_debug: force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->regs[15]); break; case EXCP_KERNEL_TRAP: if (do_kernel_trap(env)) goto error; break; case EXCP_YIELD: /* nothing to do here for user-mode, just resume guest code */ break; case EXCP_ATOMIC: cpu_exec_step_atomic(cs); break; default: error: EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); abort(); } process_pending_signals(env); } } void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs) { CPUState *cpu = env_cpu(env); TaskState *ts = cpu->opaque; struct image_info *info = ts->info; int i; cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, CPSRWriteByInstr); for(i = 0; i < 16; i++) { env->regs[i] = regs->uregs[i]; } #if TARGET_BIG_ENDIAN /* Enable BE8. */ if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 && (info->elf_flags & EF_ARM_BE8)) { env->uncached_cpsr |= CPSR_E; env->cp15.sctlr_el[1] |= SCTLR_E0E; } else { env->cp15.sctlr_el[1] |= SCTLR_B; } arm_rebuild_hflags(env); #endif ts->stack_base = info->start_stack; ts->heap_base = info->brk; /* This will be filled in on the first SYS_HEAPINFO call. */ ts->heap_limit = 0; }