/* * Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include /* for crc32 */ /* Exception helpers */ static void QEMU_NORETURN raise_exception_sync_internal(CPUTriCoreState *env, uint32_t class, int tin, uintptr_t pc, uint32_t fcd_pc) { CPUState *cs = CPU(tricore_env_get_cpu(env)); /* in case we come from a helper-call we need to restore the PC */ if (pc) { cpu_restore_state(cs, pc); } /* Tin is loaded into d[15] */ env->gpr_d[15] = tin; if (class == TRAPC_CTX_MNG && tin == TIN3_FCU) { /* upper context cannot be saved, if the context list is empty */ } else { helper_svucx(env); } /* The return address in a[11] is updated */ if (class == TRAPC_CTX_MNG && tin == TIN3_FCD) { env->SYSCON |= MASK_SYSCON_FCD_SF; /* when we run out of CSAs after saving a context a FCD trap is taken and the return address is the start of the trap handler which used the last CSA */ env->gpr_a[11] = fcd_pc; } else if (class == TRAPC_SYSCALL) { env->gpr_a[11] = env->PC + 4; } else { env->gpr_a[11] = env->PC; } /* The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the processor was not previously using the interrupt stack (in case of PSW.IS = 0). The stack pointer bit is set for using the interrupt stack: PSW.IS = 1. */ if ((env->PSW & MASK_PSW_IS) == 0) { env->gpr_a[10] = env->ISP; } env->PSW |= MASK_PSW_IS; /* The I/O mode is set to Supervisor mode, which means all permissions are enabled: PSW.IO = 10 B .*/ env->PSW |= (2 << 10); /*The current Protection Register Set is set to 0: PSW.PRS = 00 B .*/ env->PSW &= ~MASK_PSW_PRS; /* The Call Depth Counter (CDC) is cleared, and the call depth limit is set for 64: PSW.CDC = 0000000 B .*/ env->PSW &= ~MASK_PSW_CDC; /* Call Depth Counter is enabled, PSW.CDE = 1. */ env->PSW |= MASK_PSW_CDE; /* Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0. */ env->PSW &= ~MASK_PSW_GW; /*The interrupt system is globally disabled: ICR.IE = 0. The ‘old’ ICR.IE and ICR.CCPN are saved */ /* PCXI.PIE = ICR.IE */ env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + ((env->ICR & MASK_ICR_IE) << 15)); /* PCXI.PCPN = ICR.CCPN */ env->PCXI = (env->PCXI & 0xffffff) + ((env->ICR & MASK_ICR_CCPN) << 24); /* Update PC using the trap vector table */ env->PC = env->BTV | (class << 5); cpu_loop_exit(cs); } void helper_raise_exception_sync(CPUTriCoreState *env, uint32_t class, uint32_t tin) { raise_exception_sync_internal(env, class, tin, 0, 0); } static void raise_exception_sync_helper(CPUTriCoreState *env, uint32_t class, uint32_t tin, uintptr_t pc) { raise_exception_sync_internal(env, class, tin, pc, 0); } /* Addressing mode helper */ static uint16_t reverse16(uint16_t val) { uint8_t high = (uint8_t)(val >> 8); uint8_t low = (uint8_t)(val & 0xff); uint16_t rh, rl; rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023); rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023); return (rh << 8) | rl; } uint32_t helper_br_update(uint32_t reg) { uint32_t index = reg & 0xffff; uint32_t incr = reg >> 16; uint32_t new_index = reverse16(reverse16(index) + reverse16(incr)); return reg - index + new_index; } uint32_t helper_circ_update(uint32_t reg, uint32_t off) { uint32_t index = reg & 0xffff; uint32_t length = reg >> 16; int32_t new_index = index + off; if (new_index < 0) { new_index += length; } else { new_index %= length; } return reg - index + new_index; } static uint32_t ssov32(CPUTriCoreState *env, int64_t arg) { uint32_t ret; int64_t max_pos = INT32_MAX; int64_t max_neg = INT32_MIN; if (arg > max_pos) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); ret = (target_ulong)max_pos; } else { if (arg < max_neg) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); ret = (target_ulong)max_neg; } else { env->PSW_USB_V = 0; ret = (target_ulong)arg; } } env->PSW_USB_AV = arg ^ arg * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg) { uint32_t ret; uint64_t max_pos = UINT32_MAX; if (arg > max_pos) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); ret = (target_ulong)max_pos; } else { env->PSW_USB_V = 0; ret = (target_ulong)arg; } env->PSW_USB_AV = arg ^ arg * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg) { uint32_t ret; if (arg < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); ret = 0; } else { env->PSW_USB_V = 0; ret = (target_ulong)arg; } env->PSW_USB_AV = arg ^ arg * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) { int32_t max_pos = INT16_MAX; int32_t max_neg = INT16_MIN; int32_t av0, av1; env->PSW_USB_V = 0; av0 = hw0 ^ hw0 * 2u; if (hw0 > max_pos) { env->PSW_USB_V = (1 << 31); hw0 = max_pos; } else if (hw0 < max_neg) { env->PSW_USB_V = (1 << 31); hw0 = max_neg; } av1 = hw1 ^ hw1 * 2u; if (hw1 > max_pos) { env->PSW_USB_V = (1 << 31); hw1 = max_pos; } else if (hw1 < max_neg) { env->PSW_USB_V = (1 << 31); hw1 = max_neg; } env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = (av0 | av1) << 16; env->PSW_USB_SAV |= env->PSW_USB_AV; return (hw0 & 0xffff) | (hw1 << 16); } static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) { int32_t max_pos = UINT16_MAX; int32_t av0, av1; env->PSW_USB_V = 0; av0 = hw0 ^ hw0 * 2u; if (hw0 > max_pos) { env->PSW_USB_V = (1 << 31); hw0 = max_pos; } else if (hw0 < 0) { env->PSW_USB_V = (1 << 31); hw0 = 0; } av1 = hw1 ^ hw1 * 2u; if (hw1 > max_pos) { env->PSW_USB_V = (1 << 31); hw1 = max_pos; } else if (hw1 < 0) { env->PSW_USB_V = (1 << 31); hw1 = 0; } env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = (av0 | av1) << 16; env->PSW_USB_SAV |= env->PSW_USB_AV; return (hw0 & 0xffff) | (hw1 << 16); } target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t result = t1 + t2; return ssov32(env, result); } uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) { uint64_t result; int64_t ovf; result = r1 + r2; ovf = (result ^ r1) & ~(r1 ^ r2); env->PSW_USB_AV = (result ^ result * 2u) >> 32; env->PSW_USB_SAV |= env->PSW_USB_AV; if (ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if ((int64_t)r1 >= 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ } else { result = INT64_MIN; } } else { env->PSW_USB_V = 0; } return result; } target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t ret_hw0, ret_hw1; ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16); ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16); return ssov16(env, ret_hw0, ret_hw1); } uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low + mul_res0 + 0x8000; result1 = r2_high + mul_res1 + 0x8000; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; if (result0 > INT32_MAX) { ovf0 = (1 << 31); result0 = INT32_MAX; } else if (result0 < INT32_MIN) { ovf0 = (1 << 31); result0 = INT32_MIN; } if (result1 > INT32_MAX) { ovf1 = (1 << 31); result1 = INT32_MAX; } else if (result1 < INT32_MIN) { ovf1 = (1 << 31); result1 = INT32_MIN; } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low - mul_res0 + 0x8000; result1 = r2_high + mul_res1 + 0x8000; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; if (result0 > INT32_MAX) { ovf0 = (1 << 31); result0 = INT32_MAX; } else if (result0 < INT32_MIN) { ovf0 = (1 << 31); result0 = INT32_MIN; } if (result1 > INT32_MAX) { ovf1 = (1 << 31); result1 = INT32_MAX; } else if (result1 < INT32_MIN) { ovf1 = (1 << 31); result1 = INT32_MIN; } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = extract64(r1, 0, 32); int64_t t2 = extract64(r2, 0, 32); int64_t result = t1 + t2; return suov32_pos(env, result); } target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t ret_hw0, ret_hw1; ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16); ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16); return suov16(env, ret_hw0, ret_hw1); } target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t result = t1 - t2; return ssov32(env, result); } uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) { uint64_t result; int64_t ovf; result = r1 - r2; ovf = (result ^ r1) & (r1 ^ r2); env->PSW_USB_AV = (result ^ result * 2u) >> 32; env->PSW_USB_SAV |= env->PSW_USB_AV; if (ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if ((int64_t)r1 >= 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ } else { result = INT64_MIN; } } else { env->PSW_USB_V = 0; } return result; } target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t ret_hw0, ret_hw1; ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16); ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16); return ssov16(env, ret_hw0, ret_hw1); } uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low - mul_res0 + 0x8000; result1 = r2_high - mul_res1 + 0x8000; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; if (result0 > INT32_MAX) { ovf0 = (1 << 31); result0 = INT32_MAX; } else if (result0 < INT32_MIN) { ovf0 = (1 << 31); result0 = INT32_MIN; } if (result1 > INT32_MAX) { ovf1 = (1 << 31); result1 = INT32_MAX; } else if (result1 < INT32_MIN) { ovf1 = (1 << 31); result1 = INT32_MIN; } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low + mul_res0 + 0x8000; result1 = r2_high - mul_res1 + 0x8000; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; if (result0 > INT32_MAX) { ovf0 = (1 << 31); result0 = INT32_MAX; } else if (result0 < INT32_MIN) { ovf0 = (1 << 31); result0 = INT32_MIN; } if (result1 > INT32_MAX) { ovf1 = (1 << 31); result1 = INT32_MAX; } else if (result1 < INT32_MIN) { ovf1 = (1 << 31); result1 = INT32_MIN; } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = extract64(r1, 0, 32); int64_t t2 = extract64(r2, 0, 32); int64_t result = t1 - t2; return suov32_neg(env, result); } target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t ret_hw0, ret_hw1; ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16); ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16); return suov16(env, ret_hw0, ret_hw1); } target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t result = t1 * t2; return ssov32(env, result); } target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = extract64(r1, 0, 32); int64_t t2 = extract64(r2, 0, 32); int64_t result = t1 * t2; return suov32_pos(env, result); } target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = sextract64(r1, 0, 32); int32_t t2 = sextract64(r2, 0, 6); int64_t result; if (t2 == 0) { result = t1; } else if (t2 > 0) { result = t1 << t2; } else { result = t1 >> -t2; } return ssov32(env, result); } uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1) { target_ulong result; result = ((int32_t)r1 >= 0) ? r1 : (0 - r1); return ssov32(env, result); } uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1) { int32_t ret_h0, ret_h1; ret_h0 = sextract32(r1, 0, 16); ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0); ret_h1 = sextract32(r1, 16, 16); ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1); return ssov16(env, ret_h0, ret_h1); } target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t result; if (t1 > t2) { result = t1 - t2; } else { result = t2 - t1; } return ssov32(env, result); } uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t t1, t2; int32_t ret_h0, ret_h1; t1 = sextract32(r1, 0, 16); t2 = sextract32(r2, 0, 16); if (t1 > t2) { ret_h0 = t1 - t2; } else { ret_h0 = t2 - t1; } t1 = sextract32(r1, 16, 16); t2 = sextract32(r2, 16, 16); if (t1 > t2) { ret_h1 = t1 - t2; } else { ret_h1 = t2 - t1; } return ssov16(env, ret_h0, ret_h1); } target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2, target_ulong r3) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t result; result = t2 + (t1 * t3); return ssov32(env, result); } target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2, target_ulong r3) { uint64_t t1 = extract64(r1, 0, 32); uint64_t t2 = extract64(r2, 0, 32); uint64_t t3 = extract64(r3, 0, 32); int64_t result; result = t2 + (t1 * t3); return suov32_pos(env, result); } uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1, uint64_t r2, target_ulong r3) { uint64_t ret, ovf; int64_t t1 = sextract64(r1, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t mul; mul = t1 * t3; ret = mul + r2; ovf = (ret ^ mul) & ~(mul ^ r2); t1 = ret >> 32; env->PSW_USB_AV = t1 ^ t1 * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; if ((int64_t)ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul >= 0) { ret = INT64_MAX; /* ext_ret < MIN_INT */ } else { ret = INT64_MIN; } } else { env->PSW_USB_V = 0; } return ret; } uint32_t helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) { int64_t result; result = (r1 + r2); env->PSW_USB_AV = (result ^ result * 2u); env->PSW_USB_SAV |= env->PSW_USB_AV; /* we do the saturation by hand, since we produce an overflow on the host if the mul before was (0x80000000 * 0x80000000) << 1). If this is the case, we flip the saturated value. */ if (r2 == 0x8000000000000000LL) { if (result > 0x7fffffffLL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MIN; } else if (result < -0x80000000LL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MAX; } else { env->PSW_USB_V = 0; } } else { if (result > 0x7fffffffLL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MAX; } else if (result < -0x80000000LL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MIN; } else { env->PSW_USB_V = 0; } } return (uint32_t)result; } uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = (int64_t)r1; int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t result, mul; int64_t ovf; mul = (t2 * t3) << n; result = mul + t1; env->PSW_USB_AV = (result ^ result * 2u) >> 32; env->PSW_USB_SAV |= env->PSW_USB_AV; ovf = (result ^ mul) & ~(mul ^ t1); /* we do the saturation by hand, since we produce an overflow on the host if the mul was (0x80000000 * 0x80000000) << 1). If this is the case, we flip the saturated value. */ if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) { if (ovf >= 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul < 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ } else { result = INT64_MIN; } } else { env->PSW_USB_V = 0; } } else { if (ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul >= 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ } else { result = INT64_MIN; } } else { env->PSW_USB_V = 0; } } return (uint64_t)result; } uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t mul, ret; if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { mul = 0x7fffffff; } else { mul = (t2 * t3) << n; } ret = t1 + mul + 0x8000; env->PSW_USB_AV = ret ^ ret * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; if (ret > 0x7fffffffll) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV |= env->PSW_USB_V; ret = INT32_MAX; } else if (ret < -0x80000000ll) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV |= env->PSW_USB_V; ret = INT32_MIN; } else { env->PSW_USB_V = 0; } return ret & 0xffff0000ll; } uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1, uint64_t r2, target_ulong r3) { uint64_t ret, mul; uint64_t t1 = extract64(r1, 0, 32); uint64_t t3 = extract64(r3, 0, 32); mul = t1 * t3; ret = mul + r2; t1 = ret >> 32; env->PSW_USB_AV = t1 ^ t1 * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; if (ret < r2) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* saturate */ ret = UINT64_MAX; } else { env->PSW_USB_V = 0; } return ret; } target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1, target_ulong r2, target_ulong r3) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t result; result = t2 - (t1 * t3); return ssov32(env, result); } target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1, target_ulong r2, target_ulong r3) { uint64_t t1 = extract64(r1, 0, 32); uint64_t t2 = extract64(r2, 0, 32); uint64_t t3 = extract64(r3, 0, 32); uint64_t result; uint64_t mul; mul = (t1 * t3); result = t2 - mul; env->PSW_USB_AV = result ^ result * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; /* we calculate ovf by hand here, because the multiplication can overflow on the host, which would give false results if we compare to less than zero */ if (mul > t2) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = 0; } else { env->PSW_USB_V = 0; } return result; } uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1, uint64_t r2, target_ulong r3) { uint64_t ret, ovf; int64_t t1 = sextract64(r1, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t mul; mul = t1 * t3; ret = r2 - mul; ovf = (ret ^ r2) & (mul ^ r2); t1 = ret >> 32; env->PSW_USB_AV = t1 ^ t1 * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; if ((int64_t)ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul < 0) { ret = INT64_MAX; /* ext_ret < MIN_INT */ } else { ret = INT64_MIN; } } else { env->PSW_USB_V = 0; } return ret; } uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1, uint64_t r2, target_ulong r3) { uint64_t ret, mul; uint64_t t1 = extract64(r1, 0, 32); uint64_t t3 = extract64(r3, 0, 32); mul = t1 * t3; ret = r2 - mul; t1 = ret >> 32; env->PSW_USB_AV = t1 ^ t1 * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; if (ret > r2) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* saturate */ ret = 0; } else { env->PSW_USB_V = 0; } return ret; } uint32_t helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) { int64_t result; int64_t t1 = (int64_t)r1; int64_t t2 = (int64_t)r2; result = t1 - t2; env->PSW_USB_AV = (result ^ result * 2u); env->PSW_USB_SAV |= env->PSW_USB_AV; /* we do the saturation by hand, since we produce an overflow on the host if the mul before was (0x80000000 * 0x80000000) << 1). If this is the case, we flip the saturated value. */ if (r2 == 0x8000000000000000LL) { if (result > 0x7fffffffLL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MIN; } else if (result < -0x80000000LL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MAX; } else { env->PSW_USB_V = 0; } } else { if (result > 0x7fffffffLL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MAX; } else if (result < -0x80000000LL) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); result = INT32_MIN; } else { env->PSW_USB_V = 0; } } return (uint32_t)result; } uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = (int64_t)r1; int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t result, mul; int64_t ovf; mul = (t2 * t3) << n; result = t1 - mul; env->PSW_USB_AV = (result ^ result * 2u) >> 32; env->PSW_USB_SAV |= env->PSW_USB_AV; ovf = (result ^ t1) & (t1 ^ mul); /* we do the saturation by hand, since we produce an overflow on the host if the mul before was (0x80000000 * 0x80000000) << 1). If this is the case, we flip the saturated value. */ if (mul == 0x8000000000000000LL) { if (ovf >= 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul >= 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ } else { result = INT64_MIN; } } else { env->PSW_USB_V = 0; } } else { if (ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul < 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ } else { result = INT64_MIN; } } else { env->PSW_USB_V = 0; } } return (uint64_t)result; } uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t mul, ret; if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { mul = 0x7fffffff; } else { mul = (t2 * t3) << n; } ret = t1 - mul + 0x8000; env->PSW_USB_AV = ret ^ ret * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; if (ret > 0x7fffffffll) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV |= env->PSW_USB_V; ret = INT32_MAX; } else if (ret < -0x80000000ll) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV |= env->PSW_USB_V; ret = INT32_MIN; } else { env->PSW_USB_V = 0; } return ret & 0xffff0000ll; } uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg) { int32_t b, i; int32_t ovf = 0; int32_t avf = 0; int32_t ret = 0; for (i = 0; i < 4; i++) { b = sextract32(arg, i * 8, 8); b = (b >= 0) ? b : (0 - b); ovf |= (b > 0x7F) || (b < -0x80); avf |= b ^ b * 2u; ret |= (b & 0xff) << (i * 8); } env->PSW_USB_V = ovf << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 24; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg) { int32_t h, i; int32_t ovf = 0; int32_t avf = 0; int32_t ret = 0; for (i = 0; i < 2; i++) { h = sextract32(arg, i * 16, 16); h = (h >= 0) ? h : (0 - h); ovf |= (h > 0x7FFF) || (h < -0x8000); avf |= h ^ h * 2u; ret |= (h & 0xffff) << (i * 16); } env->PSW_USB_V = ovf << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 16; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t b, i; int32_t extr_r2; int32_t ovf = 0; int32_t avf = 0; int32_t ret = 0; for (i = 0; i < 4; i++) { extr_r2 = sextract32(r2, i * 8, 8); b = sextract32(r1, i * 8, 8); b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b); ovf |= (b > 0x7F) || (b < -0x80); avf |= b ^ b * 2u; ret |= (b & 0xff) << (i * 8); } env->PSW_USB_V = ovf << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 24; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t h, i; int32_t extr_r2; int32_t ovf = 0; int32_t avf = 0; int32_t ret = 0; for (i = 0; i < 2; i++) { extr_r2 = sextract32(r2, i * 16, 16); h = sextract32(r1, i * 16, 16); h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h); ovf |= (h > 0x7FFF) || (h < -0x8000); avf |= h ^ h * 2u; ret |= (h & 0xffff) << (i * 16); } env->PSW_USB_V = ovf << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 16; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low + mul_res0 + 0x8000; result1 = r2_high + mul_res1 + 0x8000; if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { ovf0 = (1 << 31); } if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { ovf1 = (1 << 31); } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low - mul_res0 + 0x8000; result1 = r2_high + mul_res1 + 0x8000; if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { ovf0 = (1 << 31); } if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { ovf1 = (1 << 31); } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t mul, ret; if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { mul = 0x7fffffff; } else { mul = (t2 * t3) << n; } ret = t1 + mul + 0x8000; if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV |= env->PSW_USB_V; } else { env->PSW_USB_V = 0; } env->PSW_USB_AV = ret ^ ret * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret & 0xffff0000ll; } uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t b, i; int32_t extr_r1, extr_r2; int32_t ovf = 0; int32_t avf = 0; uint32_t ret = 0; for (i = 0; i < 4; i++) { extr_r1 = sextract32(r1, i * 8, 8); extr_r2 = sextract32(r2, i * 8, 8); b = extr_r1 + extr_r2; ovf |= ((b > 0x7f) || (b < -0x80)); avf |= b ^ b * 2u; ret |= ((b & 0xff) << (i*8)); } env->PSW_USB_V = (ovf << 31); env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 24; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t h, i; int32_t extr_r1, extr_r2; int32_t ovf = 0; int32_t avf = 0; int32_t ret = 0; for (i = 0; i < 2; i++) { extr_r1 = sextract32(r1, i * 16, 16); extr_r2 = sextract32(r2, i * 16, 16); h = extr_r1 + extr_r2; ovf |= ((h > 0x7fff) || (h < -0x8000)); avf |= h ^ h * 2u; ret |= (h & 0xffff) << (i * 16); } env->PSW_USB_V = (ovf << 31); env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = (avf << 16); env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low - mul_res0 + 0x8000; result1 = r2_high - mul_res1 + 0x8000; if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { ovf0 = (1 << 31); } if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { ovf1 = (1 << 31); } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, uint32_t r2_h) { int64_t mul_res0 = sextract64(r1, 0, 32); int64_t mul_res1 = sextract64(r1, 32, 32); int64_t r2_low = sextract64(r2_l, 0, 32); int64_t r2_high = sextract64(r2_h, 0, 32); int64_t result0, result1; uint32_t ovf0, ovf1; uint32_t avf0, avf1; ovf0 = ovf1 = 0; result0 = r2_low + mul_res0 + 0x8000; result1 = r2_high - mul_res1 + 0x8000; if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { ovf0 = (1 << 31); } if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { ovf1 = (1 << 31); } env->PSW_USB_V = ovf0 | ovf1; env->PSW_USB_SV |= env->PSW_USB_V; avf0 = result0 * 2u; avf0 = result0 ^ avf0; avf1 = result1 * 2u; avf1 = result1 ^ avf1; env->PSW_USB_AV = avf0 | avf1; env->PSW_USB_SAV |= env->PSW_USB_AV; return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); } uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = sextract64(r1, 0, 32); int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t mul, ret; if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { mul = 0x7fffffff; } else { mul = (t2 * t3) << n; } ret = t1 - mul + 0x8000; if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV |= env->PSW_USB_V; } else { env->PSW_USB_V = 0; } env->PSW_USB_AV = ret ^ ret * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret & 0xffff0000ll; } uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t b, i; int32_t extr_r1, extr_r2; int32_t ovf = 0; int32_t avf = 0; uint32_t ret = 0; for (i = 0; i < 4; i++) { extr_r1 = sextract32(r1, i * 8, 8); extr_r2 = sextract32(r2, i * 8, 8); b = extr_r1 - extr_r2; ovf |= ((b > 0x7f) || (b < -0x80)); avf |= b ^ b * 2u; ret |= ((b & 0xff) << (i*8)); } env->PSW_USB_V = (ovf << 31); env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 24; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t h, i; int32_t extr_r1, extr_r2; int32_t ovf = 0; int32_t avf = 0; int32_t ret = 0; for (i = 0; i < 2; i++) { extr_r1 = sextract32(r1, i * 16, 16); extr_r2 = sextract32(r2, i * 16, 16); h = extr_r1 - extr_r2; ovf |= ((h > 0x7fff) || (h < -0x8000)); avf |= h ^ h * 2u; ret |= (h & 0xffff) << (i * 16); } env->PSW_USB_V = (ovf << 31); env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = avf << 16; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_eq_b(target_ulong r1, target_ulong r2) { int32_t ret; int32_t i, msk; ret = 0; msk = 0xff; for (i = 0; i < 4; i++) { if ((r1 & msk) == (r2 & msk)) { ret |= msk; } msk = msk << 8; } return ret; } uint32_t helper_eq_h(target_ulong r1, target_ulong r2) { int32_t ret = 0; if ((r1 & 0xffff) == (r2 & 0xffff)) { ret = 0xffff; } if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) { ret |= 0xffff0000; } return ret; } uint32_t helper_eqany_b(target_ulong r1, target_ulong r2) { int32_t i; uint32_t ret = 0; for (i = 0; i < 4; i++) { ret |= (sextract32(r1, i * 8, 8) == sextract32(r2, i * 8, 8)); } return ret; } uint32_t helper_eqany_h(target_ulong r1, target_ulong r2) { uint32_t ret; ret = (sextract32(r1, 0, 16) == sextract32(r2, 0, 16)); ret |= (sextract32(r1, 16, 16) == sextract32(r2, 16, 16)); return ret; } uint32_t helper_lt_b(target_ulong r1, target_ulong r2) { int32_t i; uint32_t ret = 0; for (i = 0; i < 4; i++) { if (sextract32(r1, i * 8, 8) < sextract32(r2, i * 8, 8)) { ret |= (0xff << (i * 8)); } } return ret; } uint32_t helper_lt_bu(target_ulong r1, target_ulong r2) { int32_t i; uint32_t ret = 0; for (i = 0; i < 4; i++) { if (extract32(r1, i * 8, 8) < extract32(r2, i * 8, 8)) { ret |= (0xff << (i * 8)); } } return ret; } uint32_t helper_lt_h(target_ulong r1, target_ulong r2) { uint32_t ret = 0; if (sextract32(r1, 0, 16) < sextract32(r2, 0, 16)) { ret |= 0xffff; } if (sextract32(r1, 16, 16) < sextract32(r2, 16, 16)) { ret |= 0xffff0000; } return ret; } uint32_t helper_lt_hu(target_ulong r1, target_ulong r2) { uint32_t ret = 0; if (extract32(r1, 0, 16) < extract32(r2, 0, 16)) { ret |= 0xffff; } if (extract32(r1, 16, 16) < extract32(r2, 16, 16)) { ret |= 0xffff0000; } return ret; } #define EXTREMA_H_B(name, op) \ uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \ { \ int32_t i, extr_r1, extr_r2; \ uint32_t ret = 0; \ \ for (i = 0; i < 4; i++) { \ extr_r1 = sextract32(r1, i * 8, 8); \ extr_r2 = sextract32(r2, i * 8, 8); \ extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ ret |= (extr_r1 & 0xff) << (i * 8); \ } \ return ret; \ } \ \ uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\ { \ int32_t i; \ uint32_t extr_r1, extr_r2; \ uint32_t ret = 0; \ \ for (i = 0; i < 4; i++) { \ extr_r1 = extract32(r1, i * 8, 8); \ extr_r2 = extract32(r2, i * 8, 8); \ extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ ret |= (extr_r1 & 0xff) << (i * 8); \ } \ return ret; \ } \ \ uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \ { \ int32_t extr_r1, extr_r2; \ uint32_t ret = 0; \ \ extr_r1 = sextract32(r1, 0, 16); \ extr_r2 = sextract32(r2, 0, 16); \ ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ ret = ret & 0xffff; \ \ extr_r1 = sextract32(r1, 16, 16); \ extr_r2 = sextract32(r2, 16, 16); \ extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ ret |= extr_r1 << 16; \ \ return ret; \ } \ \ uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\ { \ uint32_t extr_r1, extr_r2; \ uint32_t ret = 0; \ \ extr_r1 = extract32(r1, 0, 16); \ extr_r2 = extract32(r2, 0, 16); \ ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ ret = ret & 0xffff; \ \ extr_r1 = extract32(r1, 16, 16); \ extr_r2 = extract32(r2, 16, 16); \ extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ ret |= extr_r1 << (16); \ \ return ret; \ } \ \ uint64_t helper_ix##name(uint64_t r1, uint32_t r2) \ { \ int64_t r2l, r2h, r1hl; \ uint64_t ret = 0; \ \ ret = ((r1 + 2) & 0xffff); \ r2l = sextract64(r2, 0, 16); \ r2h = sextract64(r2, 16, 16); \ r1hl = sextract64(r1, 32, 16); \ \ if ((r2l op ## = r2h) && (r2l op r1hl)) { \ ret |= (r2l & 0xffff) << 32; \ ret |= extract64(r1, 0, 16) << 16; \ } else if ((r2h op r2l) && (r2h op r1hl)) { \ ret |= extract64(r2, 16, 16) << 32; \ ret |= extract64(r1 + 1, 0, 16) << 16; \ } else { \ ret |= r1 & 0xffffffff0000ull; \ } \ return ret; \ } \ \ uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2) \ { \ int64_t r2l, r2h, r1hl; \ uint64_t ret = 0; \ \ ret = ((r1 + 2) & 0xffff); \ r2l = extract64(r2, 0, 16); \ r2h = extract64(r2, 16, 16); \ r1hl = extract64(r1, 32, 16); \ \ if ((r2l op ## = r2h) && (r2l op r1hl)) { \ ret |= (r2l & 0xffff) << 32; \ ret |= extract64(r1, 0, 16) << 16; \ } else if ((r2h op r2l) && (r2h op r1hl)) { \ ret |= extract64(r2, 16, 16) << 32; \ ret |= extract64(r1 + 1, 0, 16) << 16; \ } else { \ ret |= r1 & 0xffffffff0000ull; \ } \ return ret; \ } EXTREMA_H_B(max, >) EXTREMA_H_B(min, <) #undef EXTREMA_H_B uint32_t helper_clo_h(target_ulong r1) { uint32_t ret_hw0 = extract32(r1, 0, 16); uint32_t ret_hw1 = extract32(r1, 16, 16); ret_hw0 = clo32(ret_hw0 << 16); ret_hw1 = clo32(ret_hw1 << 16); if (ret_hw0 > 16) { ret_hw0 = 16; } if (ret_hw1 > 16) { ret_hw1 = 16; } return ret_hw0 | (ret_hw1 << 16); } uint32_t helper_clz_h(target_ulong r1) { uint32_t ret_hw0 = extract32(r1, 0, 16); uint32_t ret_hw1 = extract32(r1, 16, 16); ret_hw0 = clz32(ret_hw0 << 16); ret_hw1 = clz32(ret_hw1 << 16); if (ret_hw0 > 16) { ret_hw0 = 16; } if (ret_hw1 > 16) { ret_hw1 = 16; } return ret_hw0 | (ret_hw1 << 16); } uint32_t helper_cls(target_ulong r1) { return clrsb32(r1); } uint32_t helper_cls_h(target_ulong r1) { uint32_t ret_hw0 = extract32(r1, 0, 16); uint32_t ret_hw1 = extract32(r1, 16, 16); ret_hw0 = clrsb32(ret_hw0 << 16); ret_hw1 = clrsb32(ret_hw1 << 16); if (ret_hw0 > 15) { ret_hw0 = 15; } if (ret_hw1 > 15) { ret_hw1 = 15; } return ret_hw0 | (ret_hw1 << 16); } uint32_t helper_sh(target_ulong r1, target_ulong r2) { int32_t shift_count = sextract32(r2, 0, 6); if (shift_count == -32) { return 0; } else if (shift_count < 0) { return r1 >> -shift_count; } else { return r1 << shift_count; } } uint32_t helper_sh_h(target_ulong r1, target_ulong r2) { int32_t ret_hw0, ret_hw1; int32_t shift_count; shift_count = sextract32(r2, 0, 5); if (shift_count == -16) { return 0; } else if (shift_count < 0) { ret_hw0 = extract32(r1, 0, 16) >> -shift_count; ret_hw1 = extract32(r1, 16, 16) >> -shift_count; return (ret_hw0 & 0xffff) | (ret_hw1 << 16); } else { ret_hw0 = extract32(r1, 0, 16) << shift_count; ret_hw1 = extract32(r1, 16, 16) << shift_count; return (ret_hw0 & 0xffff) | (ret_hw1 << 16); } } uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2) { int32_t shift_count; int64_t result, t1; uint32_t ret; shift_count = sextract32(r2, 0, 6); t1 = sextract32(r1, 0, 32); if (shift_count == 0) { env->PSW_USB_C = env->PSW_USB_V = 0; ret = r1; } else if (shift_count == -32) { env->PSW_USB_C = r1; env->PSW_USB_V = 0; ret = t1 >> 31; } else if (shift_count > 0) { result = t1 << shift_count; /* calc carry */ env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0); /* calc v */ env->PSW_USB_V = (((result > 0x7fffffffLL) || (result < -0x80000000LL)) << 31); /* calc sv */ env->PSW_USB_SV |= env->PSW_USB_V; ret = (uint32_t)result; } else { env->PSW_USB_V = 0; env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1)); ret = t1 >> -shift_count; } env->PSW_USB_AV = ret ^ ret * 2u; env->PSW_USB_SAV |= env->PSW_USB_AV; return ret; } uint32_t helper_sha_h(target_ulong r1, target_ulong r2) { int32_t shift_count; int32_t ret_hw0, ret_hw1; shift_count = sextract32(r2, 0, 5); if (shift_count == 0) { return r1; } else if (shift_count < 0) { ret_hw0 = sextract32(r1, 0, 16) >> -shift_count; ret_hw1 = sextract32(r1, 16, 16) >> -shift_count; return (ret_hw0 & 0xffff) | (ret_hw1 << 16); } else { ret_hw0 = sextract32(r1, 0, 16) << shift_count; ret_hw1 = sextract32(r1, 16, 16) << shift_count; return (ret_hw0 & 0xffff) | (ret_hw1 << 16); } } uint32_t helper_bmerge(target_ulong r1, target_ulong r2) { uint32_t i, ret; ret = 0; for (i = 0; i < 16; i++) { ret |= (r1 & 1) << (2 * i + 1); ret |= (r2 & 1) << (2 * i); r1 = r1 >> 1; r2 = r2 >> 1; } return ret; } uint64_t helper_bsplit(uint32_t r1) { int32_t i; uint64_t ret; ret = 0; for (i = 0; i < 32; i = i + 2) { /* even */ ret |= (r1 & 1) << (i/2); r1 = r1 >> 1; /* odd */ ret |= (uint64_t)(r1 & 1) << (i/2 + 32); r1 = r1 >> 1; } return ret; } uint32_t helper_parity(target_ulong r1) { uint32_t ret; uint32_t nOnes, i; ret = 0; nOnes = 0; for (i = 0; i < 8; i++) { ret ^= (r1 & 1); r1 = r1 >> 1; } /* second byte */ nOnes = 0; for (i = 0; i < 8; i++) { nOnes ^= (r1 & 1); r1 = r1 >> 1; } ret |= nOnes << 8; /* third byte */ nOnes = 0; for (i = 0; i < 8; i++) { nOnes ^= (r1 & 1); r1 = r1 >> 1; } ret |= nOnes << 16; /* fourth byte */ nOnes = 0; for (i = 0; i < 8; i++) { nOnes ^= (r1 & 1); r1 = r1 >> 1; } ret |= nOnes << 24; return ret; } uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high, target_ulong r2) { uint32_t ret; int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac; int32_t int_exp = r1_high; int32_t int_mant = r1_low; uint32_t flag_rnd = (int_mant & (1 << 7)) && ( (int_mant & (1 << 8)) || (int_mant & 0x7f) || (carry != 0)); if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) { fp_exp = 255; fp_frac = extract32(int_mant, 8, 23); } else if ((int_mant & (1<<31)) && (int_exp >= 127)) { fp_exp = 255; fp_frac = 0; } else if ((int_mant & (1<<31)) && (int_exp <= -128)) { fp_exp = 0; fp_frac = 0; } else if (int_mant == 0) { fp_exp = 0; fp_frac = 0; } else { if (((int_mant & (1 << 31)) == 0)) { temp_exp = 0; } else { temp_exp = int_exp + 128; } fp_exp_frac = (((temp_exp & 0xff) << 23) | extract32(int_mant, 8, 23)) + flag_rnd; fp_exp = extract32(fp_exp_frac, 23, 8); fp_frac = extract32(fp_exp_frac, 0, 23); } ret = r2 & (1 << 31); ret = ret + (fp_exp << 23); ret = ret + (fp_frac & 0x7fffff); return ret; } uint64_t helper_unpack(target_ulong arg1) { int32_t fp_exp = extract32(arg1, 23, 8); int32_t fp_frac = extract32(arg1, 0, 23); uint64_t ret; int32_t int_exp, int_mant; if (fp_exp == 255) { int_exp = 255; int_mant = (fp_frac << 7); } else if ((fp_exp == 0) && (fp_frac == 0)) { int_exp = -127; int_mant = 0; } else if ((fp_exp == 0) && (fp_frac != 0)) { int_exp = -126; int_mant = (fp_frac << 7); } else { int_exp = fp_exp - 127; int_mant = (fp_frac << 7); int_mant |= (1 << 30); } ret = int_exp; ret = ret << 32; ret |= int_mant; return ret; } uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint64_t ret; int32_t abs_sig_dividend, abs_divisor; ret = sextract32(r1, 0, 32); ret = ret << 24; if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { ret |= 0xffffff; } abs_sig_dividend = abs((int32_t)r1) >> 8; abs_divisor = abs((int32_t)r2); /* calc overflow ofv if (a/b >= 255) <=> (a/255 >= b) */ env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; env->PSW_USB_V = env->PSW_USB_V << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = 0; return ret; } uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint64_t ret = sextract32(r1, 0, 32); ret = ret << 24; if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { ret |= 0xffffff; } /* calc overflow */ env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80))); env->PSW_USB_V = env->PSW_USB_V << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = 0; return ret; } uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint64_t ret; int32_t abs_sig_dividend, abs_divisor; ret = sextract32(r1, 0, 32); ret = ret << 16; if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { ret |= 0xffff; } abs_sig_dividend = abs((int32_t)r1) >> 16; abs_divisor = abs((int32_t)r2); /* calc overflow ofv if (a/b >= 0xffff) <=> (a/0xffff >= b) */ env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; env->PSW_USB_V = env->PSW_USB_V << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = 0; return ret; } uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint64_t ret = sextract32(r1, 0, 32); ret = ret << 16; if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { ret |= 0xffff; } /* calc overflow */ env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000))); env->PSW_USB_V = env->PSW_USB_V << 31; env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = 0; return ret; } uint64_t helper_dvadj(uint64_t r1, uint32_t r2) { int32_t x_sign = (r1 >> 63); int32_t q_sign = x_sign ^ (r2 >> 31); int32_t eq_pos = x_sign & ((r1 >> 32) == r2); int32_t eq_neg = x_sign & ((r1 >> 32) == -r2); uint32_t quotient; uint64_t remainder; if ((q_sign & ~eq_neg) | eq_pos) { quotient = (r1 + 1) & 0xffffffff; } else { quotient = r1 & 0xffffffff; } if (eq_pos | eq_neg) { remainder = 0; } else { remainder = (r1 & 0xffffffff00000000ull); } return remainder | quotient; } uint64_t helper_dvstep(uint64_t r1, uint32_t r2) { int32_t dividend_sign = extract64(r1, 63, 1); int32_t divisor_sign = extract32(r2, 31, 1); int32_t quotient_sign = (dividend_sign != divisor_sign); int32_t addend, dividend_quotient, remainder; int32_t i, temp; if (quotient_sign) { addend = r2; } else { addend = -r2; } dividend_quotient = (int32_t)r1; remainder = (int32_t)(r1 >> 32); for (i = 0; i < 8; i++) { remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); dividend_quotient <<= 1; temp = remainder + addend; if ((temp < 0) == dividend_sign) { remainder = temp; } if (((temp < 0) == dividend_sign)) { dividend_quotient = dividend_quotient | !quotient_sign; } else { dividend_quotient = dividend_quotient | quotient_sign; } } return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; } uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2) { int32_t dividend_quotient = extract64(r1, 0, 32); int64_t remainder = extract64(r1, 32, 32); int32_t i; int64_t temp; for (i = 0; i < 8; i++) { remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); dividend_quotient <<= 1; temp = (remainder & 0xffffffff) - r2; if (temp >= 0) { remainder = temp; } dividend_quotient = dividend_quotient | !(temp < 0); } return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; } uint64_t helper_divide(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { int32_t quotient, remainder; int32_t dividend = (int32_t)r1; int32_t divisor = (int32_t)r2; if (divisor == 0) { if (dividend >= 0) { quotient = 0x7fffffff; remainder = 0; } else { quotient = 0x80000000; remainder = 0; } env->PSW_USB_V = (1 << 31); } else if ((divisor == 0xffffffff) && (dividend == 0x80000000)) { quotient = 0x7fffffff; remainder = 0; env->PSW_USB_V = (1 << 31); } else { remainder = dividend % divisor; quotient = (dividend - remainder)/divisor; env->PSW_USB_V = 0; } env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = 0; return ((uint64_t)remainder << 32) | (uint32_t)quotient; } uint64_t helper_divide_u(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t quotient, remainder; uint32_t dividend = r1; uint32_t divisor = r2; if (divisor == 0) { quotient = 0xffffffff; remainder = 0; env->PSW_USB_V = (1 << 31); } else { remainder = dividend % divisor; quotient = (dividend - remainder)/divisor; env->PSW_USB_V = 0; } env->PSW_USB_SV |= env->PSW_USB_V; env->PSW_USB_AV = 0; return ((uint64_t)remainder << 32) | quotient; } uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01, uint32_t arg10, uint32_t arg11, uint32_t n) { uint32_t result0, result1; int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && ((arg10 & 0xffff) == 0x8000) && (n == 1); int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && ((arg11 & 0xffff) == 0x8000) && (n == 1); if (sc1) { result1 = 0x7fffffff; } else { result1 = (((uint32_t)(arg00 * arg10)) << n); } if (sc0) { result0 = 0x7fffffff; } else { result0 = (((uint32_t)(arg01 * arg11)) << n); } return (((uint64_t)result1 << 32)) | result0; } uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01, uint32_t arg10, uint32_t arg11, uint32_t n) { uint64_t ret; int64_t result0, result1; int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && ((arg10 & 0xffff) == 0x8000) && (n == 1); int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && ((arg11 & 0xffff) == 0x8000) && (n == 1); if (sc1) { result1 = 0x7fffffff; } else { result1 = (((int32_t)arg00 * (int32_t)arg10) << n); } if (sc0) { result0 = 0x7fffffff; } else { result0 = (((int32_t)arg01 * (int32_t)arg11) << n); } ret = (result1 + result0); ret = ret << 16; return ret; } uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01, uint32_t arg10, uint32_t arg11, uint32_t n) { uint32_t result0, result1; int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && ((arg10 & 0xffff) == 0x8000) && (n == 1); int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && ((arg11 & 0xffff) == 0x8000) && (n == 1); if (sc1) { result1 = 0x7fffffff; } else { result1 = ((arg00 * arg10) << n) + 0x8000; } if (sc0) { result0 = 0x7fffffff; } else { result0 = ((arg01 * arg11) << n) + 0x8000; } return (result1 & 0xffff0000) | (result0 >> 16); } uint32_t helper_crc32(uint32_t arg0, uint32_t arg1) { uint8_t buf[4]; stl_be_p(buf, arg0); return crc32(arg1, buf, 4); } /* context save area (CSA) related helpers */ static int cdc_increment(target_ulong *psw) { if ((*psw & MASK_PSW_CDC) == 0x7f) { return 0; } (*psw)++; /* check for overflow */ int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); int mask = (1u << (7 - lo)) - 1; int count = *psw & mask; if (count == 0) { (*psw)--; return 1; } return 0; } static int cdc_decrement(target_ulong *psw) { if ((*psw & MASK_PSW_CDC) == 0x7f) { return 0; } /* check for underflow */ int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); int mask = (1u << (7 - lo)) - 1; int count = *psw & mask; if (count == 0) { return 1; } (*psw)--; return 0; } static bool cdc_zero(target_ulong *psw) { int cdc = *psw & MASK_PSW_CDC; /* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC == 7'b1111111, otherwise returns FALSE. */ if (cdc == 0x7f) { return true; } /* find CDC.COUNT */ int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); int mask = (1u << (7 - lo)) - 1; int count = *psw & mask; return count == 0; } static void save_context_upper(CPUTriCoreState *env, int ea) { cpu_stl_data(env, ea, env->PCXI); cpu_stl_data(env, ea+4, psw_read(env)); cpu_stl_data(env, ea+8, env->gpr_a[10]); cpu_stl_data(env, ea+12, env->gpr_a[11]); cpu_stl_data(env, ea+16, env->gpr_d[8]); cpu_stl_data(env, ea+20, env->gpr_d[9]); cpu_stl_data(env, ea+24, env->gpr_d[10]); cpu_stl_data(env, ea+28, env->gpr_d[11]); cpu_stl_data(env, ea+32, env->gpr_a[12]); cpu_stl_data(env, ea+36, env->gpr_a[13]); cpu_stl_data(env, ea+40, env->gpr_a[14]); cpu_stl_data(env, ea+44, env->gpr_a[15]); cpu_stl_data(env, ea+48, env->gpr_d[12]); cpu_stl_data(env, ea+52, env->gpr_d[13]); cpu_stl_data(env, ea+56, env->gpr_d[14]); cpu_stl_data(env, ea+60, env->gpr_d[15]); } static void save_context_lower(CPUTriCoreState *env, int ea) { cpu_stl_data(env, ea, env->PCXI); cpu_stl_data(env, ea+4, env->gpr_a[11]); cpu_stl_data(env, ea+8, env->gpr_a[2]); cpu_stl_data(env, ea+12, env->gpr_a[3]); cpu_stl_data(env, ea+16, env->gpr_d[0]); cpu_stl_data(env, ea+20, env->gpr_d[1]); cpu_stl_data(env, ea+24, env->gpr_d[2]); cpu_stl_data(env, ea+28, env->gpr_d[3]); cpu_stl_data(env, ea+32, env->gpr_a[4]); cpu_stl_data(env, ea+36, env->gpr_a[5]); cpu_stl_data(env, ea+40, env->gpr_a[6]); cpu_stl_data(env, ea+44, env->gpr_a[7]); cpu_stl_data(env, ea+48, env->gpr_d[4]); cpu_stl_data(env, ea+52, env->gpr_d[5]); cpu_stl_data(env, ea+56, env->gpr_d[6]); cpu_stl_data(env, ea+60, env->gpr_d[7]); } static void restore_context_upper(CPUTriCoreState *env, int ea, target_ulong *new_PCXI, target_ulong *new_PSW) { *new_PCXI = cpu_ldl_data(env, ea); *new_PSW = cpu_ldl_data(env, ea+4); env->gpr_a[10] = cpu_ldl_data(env, ea+8); env->gpr_a[11] = cpu_ldl_data(env, ea+12); env->gpr_d[8] = cpu_ldl_data(env, ea+16); env->gpr_d[9] = cpu_ldl_data(env, ea+20); env->gpr_d[10] = cpu_ldl_data(env, ea+24); env->gpr_d[11] = cpu_ldl_data(env, ea+28); env->gpr_a[12] = cpu_ldl_data(env, ea+32); env->gpr_a[13] = cpu_ldl_data(env, ea+36); env->gpr_a[14] = cpu_ldl_data(env, ea+40); env->gpr_a[15] = cpu_ldl_data(env, ea+44); env->gpr_d[12] = cpu_ldl_data(env, ea+48); env->gpr_d[13] = cpu_ldl_data(env, ea+52); env->gpr_d[14] = cpu_ldl_data(env, ea+56); env->gpr_d[15] = cpu_ldl_data(env, ea+60); } static void restore_context_lower(CPUTriCoreState *env, int ea, target_ulong *ra, target_ulong *pcxi) { *pcxi = cpu_ldl_data(env, ea); *ra = cpu_ldl_data(env, ea+4); env->gpr_a[2] = cpu_ldl_data(env, ea+8); env->gpr_a[3] = cpu_ldl_data(env, ea+12); env->gpr_d[0] = cpu_ldl_data(env, ea+16); env->gpr_d[1] = cpu_ldl_data(env, ea+20); env->gpr_d[2] = cpu_ldl_data(env, ea+24); env->gpr_d[3] = cpu_ldl_data(env, ea+28); env->gpr_a[4] = cpu_ldl_data(env, ea+32); env->gpr_a[5] = cpu_ldl_data(env, ea+36); env->gpr_a[6] = cpu_ldl_data(env, ea+40); env->gpr_a[7] = cpu_ldl_data(env, ea+44); env->gpr_d[4] = cpu_ldl_data(env, ea+48); env->gpr_d[5] = cpu_ldl_data(env, ea+52); env->gpr_d[6] = cpu_ldl_data(env, ea+56); env->gpr_d[7] = cpu_ldl_data(env, ea+60); } void helper_call(CPUTriCoreState *env, uint32_t next_pc) { target_ulong tmp_FCX; target_ulong ea; target_ulong new_FCX; target_ulong psw; psw = psw_read(env); /* if (FCX == 0) trap(FCU); */ if (env->FCX == 0) { /* FCU trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); } /* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */ if (psw & MASK_PSW_CDE) { if (cdc_increment(&psw)) { /* CDO trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDO, GETPC()); } } /* PSW.CDE = 1;*/ psw |= MASK_PSW_CDE; /* tmp_FCX = FCX; */ tmp_FCX = env->FCX; /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ ea = ((env->FCX & MASK_FCX_FCXS) << 12) + ((env->FCX & MASK_FCX_FCXO) << 6); /* new_FCX = M(EA, word); */ new_FCX = cpu_ldl_data(env, ea); /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], A[13], A[14], A[15], D[12], D[13], D[14], D[15]}; */ save_context_upper(env, ea); /* PCXI.PCPN = ICR.CCPN; */ env->PCXI = (env->PCXI & 0xffffff) + ((env->ICR & MASK_ICR_CCPN) << 24); /* PCXI.PIE = ICR.IE; */ env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + ((env->ICR & MASK_ICR_IE) << 15)); /* PCXI.UL = 1; */ env->PCXI |= MASK_PCXI_UL; /* PCXI[19: 0] = FCX[19: 0]; */ env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); /* FCX[19: 0] = new_FCX[19: 0]; */ env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); /* A[11] = next_pc[31: 0]; */ env->gpr_a[11] = next_pc; /* if (tmp_FCX == LCX) trap(FCD);*/ if (tmp_FCX == env->LCX) { /* FCD trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); } psw_write(env, psw); } void helper_ret(CPUTriCoreState *env) { target_ulong ea; target_ulong new_PCXI; target_ulong new_PSW, psw; psw = psw_read(env); /* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/ if (psw & MASK_PSW_CDE) { if (cdc_decrement(&psw)) { /* CDU trap */ psw_write(env, psw); raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDU, GETPC()); } } /* if (PCXI[19: 0] == 0) then trap(CSU); */ if ((env->PCXI & 0xfffff) == 0) { /* CSU trap */ psw_write(env, psw); raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); } /* if (PCXI.UL == 0) then trap(CTYP); */ if ((env->PCXI & MASK_PCXI_UL) == 0) { /* CTYP trap */ cdc_increment(&psw); /* restore to the start of helper */ psw_write(env, psw); raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); } /* PC = {A11 [31: 1], 1’b0}; */ env->PC = env->gpr_a[11] & 0xfffffffe; /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + ((env->PCXI & MASK_PCXI_PCXO) << 6); /* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ restore_context_upper(env, ea, &new_PCXI, &new_PSW); /* M(EA, word) = FCX; */ cpu_stl_data(env, ea, env->FCX); /* FCX[19: 0] = PCXI[19: 0]; */ env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); /* PCXI = new_PCXI; */ env->PCXI = new_PCXI; if (tricore_feature(env, TRICORE_FEATURE_13)) { /* PSW = new_PSW */ psw_write(env, new_PSW); } else { /* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */ psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000))); } } void helper_bisr(CPUTriCoreState *env, uint32_t const9) { target_ulong tmp_FCX; target_ulong ea; target_ulong new_FCX; if (env->FCX == 0) { /* FCU trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); } tmp_FCX = env->FCX; ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6); /* new_FCX = M(EA, word); */ new_FCX = cpu_ldl_data(env, ea); /* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4] , A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */ save_context_lower(env, ea); /* PCXI.PCPN = ICR.CCPN */ env->PCXI = (env->PCXI & 0xffffff) + ((env->ICR & MASK_ICR_CCPN) << 24); /* PCXI.PIE = ICR.IE */ env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + ((env->ICR & MASK_ICR_IE) << 15)); /* PCXI.UL = 0 */ env->PCXI &= ~(MASK_PCXI_UL); /* PCXI[19: 0] = FCX[19: 0] */ env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); /* FXC[19: 0] = new_FCX[19: 0] */ env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); /* ICR.IE = 1 */ env->ICR |= MASK_ICR_IE; env->ICR |= const9; /* ICR.CCPN = const9[7: 0];*/ if (tmp_FCX == env->LCX) { /* FCD trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); } } void helper_rfe(CPUTriCoreState *env) { target_ulong ea; target_ulong new_PCXI; target_ulong new_PSW; /* if (PCXI[19: 0] == 0) then trap(CSU); */ if ((env->PCXI & 0xfffff) == 0) { /* raise csu trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); } /* if (PCXI.UL == 0) then trap(CTYP); */ if ((env->PCXI & MASK_PCXI_UL) == 0) { /* raise CTYP trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); } /* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */ if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) { /* raise NEST trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_NEST, GETPC()); } env->PC = env->gpr_a[11] & ~0x1; /* ICR.IE = PCXI.PIE; */ env->ICR = (env->ICR & ~MASK_ICR_IE) + ((env->PCXI & MASK_PCXI_PIE) >> 15); /* ICR.CCPN = PCXI.PCPN; */ env->ICR = (env->ICR & ~MASK_ICR_CCPN) + ((env->PCXI & MASK_PCXI_PCPN) >> 24); /*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/ ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + ((env->PCXI & MASK_PCXI_PCXO) << 6); /*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ restore_context_upper(env, ea, &new_PCXI, &new_PSW); /* M(EA, word) = FCX;*/ cpu_stl_data(env, ea, env->FCX); /* FCX[19: 0] = PCXI[19: 0]; */ env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); /* PCXI = new_PCXI; */ env->PCXI = new_PCXI; /* write psw */ psw_write(env, new_PSW); } void helper_rfm(CPUTriCoreState *env) { env->PC = (env->gpr_a[11] & ~0x1); /* ICR.IE = PCXI.PIE; */ env->ICR = (env->ICR & ~MASK_ICR_IE) | ((env->PCXI & MASK_PCXI_PIE) >> 15); /* ICR.CCPN = PCXI.PCPN; */ env->ICR = (env->ICR & ~MASK_ICR_CCPN) | ((env->PCXI & MASK_PCXI_PCPN) >> 24); /* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */ env->PCXI = cpu_ldl_data(env, env->DCX); psw_write(env, cpu_ldl_data(env, env->DCX+4)); env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8); env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12); if (tricore_feature(env, TRICORE_FEATURE_131)) { env->DBGTCR = 0; } } void helper_ldlcx(CPUTriCoreState *env, uint32_t ea) { uint32_t dummy; /* insn doesn't load PCXI and RA */ restore_context_lower(env, ea, &dummy, &dummy); } void helper_lducx(CPUTriCoreState *env, uint32_t ea) { uint32_t dummy; /* insn doesn't load PCXI and PSW */ restore_context_upper(env, ea, &dummy, &dummy); } void helper_stlcx(CPUTriCoreState *env, uint32_t ea) { save_context_lower(env, ea); } void helper_stucx(CPUTriCoreState *env, uint32_t ea) { save_context_upper(env, ea); } void helper_svlcx(CPUTriCoreState *env) { target_ulong tmp_FCX; target_ulong ea; target_ulong new_FCX; if (env->FCX == 0) { /* FCU trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); } /* tmp_FCX = FCX; */ tmp_FCX = env->FCX; /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ ea = ((env->FCX & MASK_FCX_FCXS) << 12) + ((env->FCX & MASK_FCX_FCXO) << 6); /* new_FCX = M(EA, word); */ new_FCX = cpu_ldl_data(env, ea); /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], A[13], A[14], A[15], D[12], D[13], D[14], D[15]}; */ save_context_lower(env, ea); /* PCXI.PCPN = ICR.CCPN; */ env->PCXI = (env->PCXI & 0xffffff) + ((env->ICR & MASK_ICR_CCPN) << 24); /* PCXI.PIE = ICR.IE; */ env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + ((env->ICR & MASK_ICR_IE) << 15)); /* PCXI.UL = 0; */ env->PCXI &= ~MASK_PCXI_UL; /* PCXI[19: 0] = FCX[19: 0]; */ env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); /* FCX[19: 0] = new_FCX[19: 0]; */ env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); /* if (tmp_FCX == LCX) trap(FCD);*/ if (tmp_FCX == env->LCX) { /* FCD trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); } } void helper_svucx(CPUTriCoreState *env) { target_ulong tmp_FCX; target_ulong ea; target_ulong new_FCX; if (env->FCX == 0) { /* FCU trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); } /* tmp_FCX = FCX; */ tmp_FCX = env->FCX; /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ ea = ((env->FCX & MASK_FCX_FCXS) << 12) + ((env->FCX & MASK_FCX_FCXO) << 6); /* new_FCX = M(EA, word); */ new_FCX = cpu_ldl_data(env, ea); /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], A[13], A[14], A[15], D[12], D[13], D[14], D[15]}; */ save_context_upper(env, ea); /* PCXI.PCPN = ICR.CCPN; */ env->PCXI = (env->PCXI & 0xffffff) + ((env->ICR & MASK_ICR_CCPN) << 24); /* PCXI.PIE = ICR.IE; */ env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + ((env->ICR & MASK_ICR_IE) << 15)); /* PCXI.UL = 1; */ env->PCXI |= MASK_PCXI_UL; /* PCXI[19: 0] = FCX[19: 0]; */ env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); /* FCX[19: 0] = new_FCX[19: 0]; */ env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); /* if (tmp_FCX == LCX) trap(FCD);*/ if (tmp_FCX == env->LCX) { /* FCD trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); } } void helper_rslcx(CPUTriCoreState *env) { target_ulong ea; target_ulong new_PCXI; /* if (PCXI[19: 0] == 0) then trap(CSU); */ if ((env->PCXI & 0xfffff) == 0) { /* CSU trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); } /* if (PCXI.UL == 1) then trap(CTYP); */ if ((env->PCXI & MASK_PCXI_UL) != 0) { /* CTYP trap */ raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); } /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + ((env->PCXI & MASK_PCXI_PCXO) << 6); /* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12], A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ restore_context_lower(env, ea, &env->gpr_a[11], &new_PCXI); /* M(EA, word) = FCX; */ cpu_stl_data(env, ea, env->FCX); /* M(EA, word) = FCX; */ cpu_stl_data(env, ea, env->FCX); /* FCX[19: 0] = PCXI[19: 0]; */ env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); /* PCXI = new_PCXI; */ env->PCXI = new_PCXI; } void helper_psw_write(CPUTriCoreState *env, uint32_t arg) { psw_write(env, arg); } uint32_t helper_psw_read(CPUTriCoreState *env) { return psw_read(env); } static inline void QEMU_NORETURN do_raise_exception_err(CPUTriCoreState *env, uint32_t exception, int error_code, uintptr_t pc) { CPUState *cs = CPU(tricore_env_get_cpu(env)); cs->exception_index = exception; env->error_code = error_code; if (pc) { /* now we have a real cpu fault */ cpu_restore_state(cs, pc); } cpu_loop_exit(cs); } void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { int ret; ret = cpu_tricore_handle_mmu_fault(cs, addr, access_type, mmu_idx); if (ret) { TriCoreCPU *cpu = TRICORE_CPU(cs); CPUTriCoreState *env = &cpu->env; do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr); } }