/* * QEMU AHCI Emulation * * Copyright (c) 2010 qiaochong@loongson.cn * Copyright (c) 2010 Roland Elek * Copyright (c) 2010 Sebastian Herbszt * Copyright (c) 2010 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include #include #include #include #include #include "monitor/monitor.h" #include "sysemu/dma.h" #include "internal.h" #include #include /* #define DEBUG_AHCI */ #ifdef DEBUG_AHCI #define DPRINTF(port, fmt, ...) \ do { fprintf(stderr, "ahci: %s: [%d] ", __FUNCTION__, port); \ fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(port, fmt, ...) do {} while(0) #endif static void check_cmd(AHCIState *s, int port); static int handle_cmd(AHCIState *s,int port,int slot); static void ahci_reset_port(AHCIState *s, int port); static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis); static void ahci_init_d2h(AHCIDevice *ad); static uint32_t ahci_port_read(AHCIState *s, int port, int offset) { uint32_t val; AHCIPortRegs *pr; pr = &s->dev[port].port_regs; switch (offset) { case PORT_LST_ADDR: val = pr->lst_addr; break; case PORT_LST_ADDR_HI: val = pr->lst_addr_hi; break; case PORT_FIS_ADDR: val = pr->fis_addr; break; case PORT_FIS_ADDR_HI: val = pr->fis_addr_hi; break; case PORT_IRQ_STAT: val = pr->irq_stat; break; case PORT_IRQ_MASK: val = pr->irq_mask; break; case PORT_CMD: val = pr->cmd; break; case PORT_TFDATA: val = ((uint16_t)s->dev[port].port.ifs[0].error << 8) | s->dev[port].port.ifs[0].status; break; case PORT_SIG: val = pr->sig; break; case PORT_SCR_STAT: if (s->dev[port].port.ifs[0].bs) { val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; } else { val = SATA_SCR_SSTATUS_DET_NODEV; } break; case PORT_SCR_CTL: val = pr->scr_ctl; break; case PORT_SCR_ERR: val = pr->scr_err; break; case PORT_SCR_ACT: pr->scr_act &= ~s->dev[port].finished; s->dev[port].finished = 0; val = pr->scr_act; break; case PORT_CMD_ISSUE: val = pr->cmd_issue; break; case PORT_RESERVED: default: val = 0; } DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val); return val; } static void ahci_irq_raise(AHCIState *s, AHCIDevice *dev) { AHCIPCIState *d = container_of(s, AHCIPCIState, ahci); PCIDevice *pci_dev = (PCIDevice *)object_dynamic_cast(OBJECT(d), TYPE_PCI_DEVICE); DPRINTF(0, "raise irq\n"); if (pci_dev && msi_enabled(pci_dev)) { msi_notify(pci_dev, 0); } else { qemu_irq_raise(s->irq); } } static void ahci_irq_lower(AHCIState *s, AHCIDevice *dev) { AHCIPCIState *d = container_of(s, AHCIPCIState, ahci); PCIDevice *pci_dev = (PCIDevice *)object_dynamic_cast(OBJECT(d), TYPE_PCI_DEVICE); DPRINTF(0, "lower irq\n"); if (!pci_dev || !msi_enabled(pci_dev)) { qemu_irq_lower(s->irq); } } static void ahci_check_irq(AHCIState *s) { int i; DPRINTF(-1, "check irq %#x\n", s->control_regs.irqstatus); s->control_regs.irqstatus = 0; for (i = 0; i < s->ports; i++) { AHCIPortRegs *pr = &s->dev[i].port_regs; if (pr->irq_stat & pr->irq_mask) { s->control_regs.irqstatus |= (1 << i); } } if (s->control_regs.irqstatus && (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { ahci_irq_raise(s, NULL); } else { ahci_irq_lower(s, NULL); } } static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, int irq_type) { DPRINTF(d->port_no, "trigger irq %#x -> %x\n", irq_type, d->port_regs.irq_mask & irq_type); d->port_regs.irq_stat |= irq_type; ahci_check_irq(s); } static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, uint32_t wanted) { hwaddr len = wanted; if (*ptr) { dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); } *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE); if (len < wanted) { dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); *ptr = NULL; } } static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) { AHCIPortRegs *pr = &s->dev[port].port_regs; DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val); switch (offset) { case PORT_LST_ADDR: pr->lst_addr = val; map_page(s->as, &s->dev[port].lst, ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); s->dev[port].cur_cmd = NULL; break; case PORT_LST_ADDR_HI: pr->lst_addr_hi = val; map_page(s->as, &s->dev[port].lst, ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); s->dev[port].cur_cmd = NULL; break; case PORT_FIS_ADDR: pr->fis_addr = val; map_page(s->as, &s->dev[port].res_fis, ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); break; case PORT_FIS_ADDR_HI: pr->fis_addr_hi = val; map_page(s->as, &s->dev[port].res_fis, ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); break; case PORT_IRQ_STAT: pr->irq_stat &= ~val; ahci_check_irq(s); break; case PORT_IRQ_MASK: pr->irq_mask = val & 0xfdc000ff; ahci_check_irq(s); break; case PORT_CMD: pr->cmd = val & ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); if (pr->cmd & PORT_CMD_START) { pr->cmd |= PORT_CMD_LIST_ON; } if (pr->cmd & PORT_CMD_FIS_RX) { pr->cmd |= PORT_CMD_FIS_ON; } /* XXX usually the FIS would be pending on the bus here and issuing deferred until the OS enables FIS receival. Instead, we only submit it once - which works in most cases, but is a hack. */ if ((pr->cmd & PORT_CMD_FIS_ON) && !s->dev[port].init_d2h_sent) { ahci_init_d2h(&s->dev[port]); s->dev[port].init_d2h_sent = true; } check_cmd(s, port); break; case PORT_TFDATA: s->dev[port].port.ifs[0].error = (val >> 8) & 0xff; s->dev[port].port.ifs[0].status = val & 0xff; break; case PORT_SIG: pr->sig = val; break; case PORT_SCR_STAT: pr->scr_stat = val; break; case PORT_SCR_CTL: if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && ((val & AHCI_SCR_SCTL_DET) == 0)) { ahci_reset_port(s, port); } pr->scr_ctl = val; break; case PORT_SCR_ERR: pr->scr_err &= ~val; break; case PORT_SCR_ACT: /* RW1 */ pr->scr_act |= val; break; case PORT_CMD_ISSUE: pr->cmd_issue |= val; check_cmd(s, port); break; default: break; } } static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) { AHCIState *s = opaque; uint32_t val = 0; if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { switch (addr) { case HOST_CAP: val = s->control_regs.cap; break; case HOST_CTL: val = s->control_regs.ghc; break; case HOST_IRQ_STAT: val = s->control_regs.irqstatus; break; case HOST_PORTS_IMPL: val = s->control_regs.impl; break; case HOST_VERSION: val = s->control_regs.version; break; } DPRINTF(-1, "(addr 0x%08X), val 0x%08X\n", (unsigned) addr, val); } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < (AHCI_PORT_REGS_START_ADDR + (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK); } return val; } static void ahci_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { AHCIState *s = opaque; /* Only aligned reads are allowed on AHCI */ if (addr & 3) { fprintf(stderr, "ahci: Mis-aligned write to addr 0x" TARGET_FMT_plx "\n", addr); return; } if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { DPRINTF(-1, "(addr 0x%08X), val 0x%08"PRIX64"\n", (unsigned) addr, val); switch (addr) { case HOST_CAP: /* R/WO, RO */ /* FIXME handle R/WO */ break; case HOST_CTL: /* R/W */ if (val & HOST_CTL_RESET) { DPRINTF(-1, "HBA Reset\n"); ahci_reset(s); } else { s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; ahci_check_irq(s); } break; case HOST_IRQ_STAT: /* R/WC, RO */ s->control_regs.irqstatus &= ~val; ahci_check_irq(s); break; case HOST_PORTS_IMPL: /* R/WO, RO */ /* FIXME handle R/WO */ break; case HOST_VERSION: /* RO */ /* FIXME report write? */ break; default: DPRINTF(-1, "write to unknown register 0x%x\n", (unsigned)addr); } } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < (AHCI_PORT_REGS_START_ADDR + (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK, val); } } static const MemoryRegionOps ahci_mem_ops = { .read = ahci_mem_read, .write = ahci_mem_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t ahci_idp_read(void *opaque, hwaddr addr, unsigned size) { AHCIState *s = opaque; if (addr == s->idp_offset) { /* index register */ return s->idp_index; } else if (addr == s->idp_offset + 4) { /* data register - do memory read at location selected by index */ return ahci_mem_read(opaque, s->idp_index, size); } else { return 0; } } static void ahci_idp_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { AHCIState *s = opaque; if (addr == s->idp_offset) { /* index register - mask off reserved bits */ s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); } else if (addr == s->idp_offset + 4) { /* data register - do memory write at location selected by index */ ahci_mem_write(opaque, s->idp_index, val, size); } } static const MemoryRegionOps ahci_idp_ops = { .read = ahci_idp_read, .write = ahci_idp_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void ahci_reg_init(AHCIState *s) { int i; s->control_regs.cap = (s->ports - 1) | (AHCI_NUM_COMMAND_SLOTS << 8) | (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | HOST_CAP_NCQ | HOST_CAP_AHCI; s->control_regs.impl = (1 << s->ports) - 1; s->control_regs.version = AHCI_VERSION_1_0; for (i = 0; i < s->ports; i++) { s->dev[i].port_state = STATE_RUN; } } static void check_cmd(AHCIState *s, int port) { AHCIPortRegs *pr = &s->dev[port].port_regs; int slot; if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { if ((pr->cmd_issue & (1U << slot)) && !handle_cmd(s, port, slot)) { pr->cmd_issue &= ~(1U << slot); } } } } static void ahci_check_cmd_bh(void *opaque) { AHCIDevice *ad = opaque; qemu_bh_delete(ad->check_bh); ad->check_bh = NULL; if ((ad->busy_slot != -1) && !(ad->port.ifs[0].status & (BUSY_STAT|DRQ_STAT))) { /* no longer busy */ ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot); ad->busy_slot = -1; } check_cmd(ad->hba, ad->port_no); } static void ahci_init_d2h(AHCIDevice *ad) { uint8_t init_fis[20]; IDEState *ide_state = &ad->port.ifs[0]; memset(init_fis, 0, sizeof(init_fis)); init_fis[4] = 1; init_fis[12] = 1; if (ide_state->drive_kind == IDE_CD) { init_fis[5] = ide_state->lcyl; init_fis[6] = ide_state->hcyl; } ahci_write_fis_d2h(ad, init_fis); } static void ahci_reset_port(AHCIState *s, int port) { AHCIDevice *d = &s->dev[port]; AHCIPortRegs *pr = &d->port_regs; IDEState *ide_state = &d->port.ifs[0]; int i; DPRINTF(port, "reset port\n"); ide_bus_reset(&d->port); ide_state->ncq_queues = AHCI_MAX_CMDS; pr->scr_stat = 0; pr->scr_err = 0; pr->scr_act = 0; d->busy_slot = -1; d->init_d2h_sent = false; ide_state = &s->dev[port].port.ifs[0]; if (!ide_state->bs) { return; } /* reset ncq queue */ for (i = 0; i < AHCI_MAX_CMDS; i++) { NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; if (!ncq_tfs->used) { continue; } if (ncq_tfs->aiocb) { bdrv_aio_cancel(ncq_tfs->aiocb); ncq_tfs->aiocb = NULL; } /* Maybe we just finished the request thanks to bdrv_aio_cancel() */ if (!ncq_tfs->used) { continue; } qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } s->dev[port].port_state = STATE_RUN; if (!ide_state->bs) { s->dev[port].port_regs.sig = 0; ide_state->status = SEEK_STAT | WRERR_STAT; } else if (ide_state->drive_kind == IDE_CD) { s->dev[port].port_regs.sig = SATA_SIGNATURE_CDROM; ide_state->lcyl = 0x14; ide_state->hcyl = 0xeb; DPRINTF(port, "set lcyl = %d\n", ide_state->lcyl); ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; } else { s->dev[port].port_regs.sig = SATA_SIGNATURE_DISK; ide_state->status = SEEK_STAT | WRERR_STAT; } ide_state->error = 1; ahci_init_d2h(d); } static void debug_print_fis(uint8_t *fis, int cmd_len) { #ifdef DEBUG_AHCI int i; fprintf(stderr, "fis:"); for (i = 0; i < cmd_len; i++) { if ((i & 0xf) == 0) { fprintf(stderr, "\n%02x:",i); } fprintf(stderr, "%02x ",fis[i]); } fprintf(stderr, "\n"); #endif } static void ahci_write_fis_sdb(AHCIState *s, int port, uint32_t finished) { AHCIPortRegs *pr = &s->dev[port].port_regs; IDEState *ide_state; uint8_t *sdb_fis; if (!s->dev[port].res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return; } sdb_fis = &s->dev[port].res_fis[RES_FIS_SDBFIS]; ide_state = &s->dev[port].port.ifs[0]; /* clear memory */ *(uint32_t*)sdb_fis = 0; /* write values */ sdb_fis[0] = ide_state->error; sdb_fis[2] = ide_state->status & 0x77; s->dev[port].finished |= finished; *(uint32_t*)(sdb_fis + 4) = cpu_to_le32(s->dev[port].finished); ahci_trigger_irq(s, &s->dev[port], PORT_IRQ_STAT_SDBS); } static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis) { AHCIPortRegs *pr = &ad->port_regs; uint8_t *d2h_fis; int i; dma_addr_t cmd_len = 0x80; int cmd_mapped = 0; if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return; } if (!cmd_fis) { /* map cmd_fis */ uint64_t tbl_addr = le64_to_cpu(ad->cur_cmd->tbl_addr); cmd_fis = dma_memory_map(ad->hba->as, tbl_addr, &cmd_len, DMA_DIRECTION_TO_DEVICE); cmd_mapped = 1; } d2h_fis = &ad->res_fis[RES_FIS_RFIS]; d2h_fis[0] = 0x34; d2h_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0); d2h_fis[2] = ad->port.ifs[0].status; d2h_fis[3] = ad->port.ifs[0].error; d2h_fis[4] = cmd_fis[4]; d2h_fis[5] = cmd_fis[5]; d2h_fis[6] = cmd_fis[6]; d2h_fis[7] = cmd_fis[7]; d2h_fis[8] = cmd_fis[8]; d2h_fis[9] = cmd_fis[9]; d2h_fis[10] = cmd_fis[10]; d2h_fis[11] = cmd_fis[11]; d2h_fis[12] = cmd_fis[12]; d2h_fis[13] = cmd_fis[13]; for (i = 14; i < 20; i++) { d2h_fis[i] = 0; } if (d2h_fis[2] & ERR_STAT) { ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_TFES); } ahci_trigger_irq(ad->hba, ad, PORT_IRQ_D2H_REG_FIS); if (cmd_mapped) { dma_memory_unmap(ad->hba->as, cmd_fis, cmd_len, DMA_DIRECTION_TO_DEVICE, cmd_len); } } static int prdt_tbl_entry_size(const AHCI_SG *tbl) { return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; } static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, int offset) { AHCICmdHdr *cmd = ad->cur_cmd; uint32_t opts = le32_to_cpu(cmd->opts); uint64_t prdt_addr = le64_to_cpu(cmd->tbl_addr) + 0x80; int sglist_alloc_hint = opts >> AHCI_CMD_HDR_PRDT_LEN; dma_addr_t prdt_len = (sglist_alloc_hint * sizeof(AHCI_SG)); dma_addr_t real_prdt_len = prdt_len; uint8_t *prdt; int i; int r = 0; int sum = 0; int off_idx = -1; int off_pos = -1; int tbl_entry_size; IDEBus *bus = &ad->port; BusState *qbus = BUS(bus); if (!sglist_alloc_hint) { DPRINTF(ad->port_no, "no sg list given by guest: 0x%08x\n", opts); return -1; } /* map PRDT */ if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, DMA_DIRECTION_TO_DEVICE))){ DPRINTF(ad->port_no, "map failed\n"); return -1; } if (prdt_len < real_prdt_len) { DPRINTF(ad->port_no, "mapped less than expected\n"); r = -1; goto out; } /* Get entries in the PRDT, init a qemu sglist accordingly */ if (sglist_alloc_hint > 0) { AHCI_SG *tbl = (AHCI_SG *)prdt; sum = 0; for (i = 0; i < sglist_alloc_hint; i++) { /* flags_size is zero-based */ tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); if (offset <= (sum + tbl_entry_size)) { off_idx = i; off_pos = offset - sum; break; } sum += tbl_entry_size; } if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { DPRINTF(ad->port_no, "%s: Incorrect offset! " "off_idx: %d, off_pos: %d\n", __func__, off_idx, off_pos); r = -1; goto out; } qemu_sglist_init(sglist, qbus->parent, (sglist_alloc_hint - off_idx), ad->hba->as); qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr + off_pos), prdt_tbl_entry_size(&tbl[off_idx]) - off_pos); for (i = off_idx + 1; i < sglist_alloc_hint; i++) { /* flags_size is zero-based */ qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), prdt_tbl_entry_size(&tbl[i])); } } out: dma_memory_unmap(ad->hba->as, prdt, prdt_len, DMA_DIRECTION_TO_DEVICE, prdt_len); return r; } static void ncq_cb(void *opaque, int ret) { NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; /* Clear bit for this tag in SActive */ ncq_tfs->drive->port_regs.scr_act &= ~(1 << ncq_tfs->tag); if (ret < 0) { /* error */ ide_state->error = ABRT_ERR; ide_state->status = READY_STAT | ERR_STAT; ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag); } else { ide_state->status = READY_STAT | SEEK_STAT; } ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, (1 << ncq_tfs->tag)); DPRINTF(ncq_tfs->drive->port_no, "NCQ transfer tag %d finished\n", ncq_tfs->tag); bdrv_acct_done(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct); qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis, int slot) { NCQFrame *ncq_fis = (NCQFrame*)cmd_fis; uint8_t tag = ncq_fis->tag >> 3; NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[tag]; if (ncq_tfs->used) { /* error - already in use */ fprintf(stderr, "%s: tag %d already used\n", __FUNCTION__, tag); return; } ncq_tfs->used = 1; ncq_tfs->drive = &s->dev[port]; ncq_tfs->slot = slot; ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | ((uint64_t)ncq_fis->lba4 << 32) | ((uint64_t)ncq_fis->lba3 << 24) | ((uint64_t)ncq_fis->lba2 << 16) | ((uint64_t)ncq_fis->lba1 << 8) | (uint64_t)ncq_fis->lba0; /* Note: We calculate the sector count, but don't currently rely on it. * The total size of the DMA buffer tells us the transfer size instead. */ ncq_tfs->sector_count = ((uint16_t)ncq_fis->sector_count_high << 8) | ncq_fis->sector_count_low; DPRINTF(port, "NCQ transfer LBA from %"PRId64" to %"PRId64", " "drive max %"PRId64"\n", ncq_tfs->lba, ncq_tfs->lba + ncq_tfs->sector_count - 2, s->dev[port].port.ifs[0].nb_sectors - 1); ahci_populate_sglist(&s->dev[port], &ncq_tfs->sglist, 0); ncq_tfs->tag = tag; switch(ncq_fis->command) { case READ_FPDMA_QUEUED: DPRINTF(port, "NCQ reading %d sectors from LBA %"PRId64", " "tag %d\n", ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag); DPRINTF(port, "tag %d aio read %"PRId64"\n", ncq_tfs->tag, ncq_tfs->lba); dma_acct_start(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct, &ncq_tfs->sglist, BDRV_ACCT_READ); ncq_tfs->aiocb = dma_bdrv_read(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->sglist, ncq_tfs->lba, ncq_cb, ncq_tfs); break; case WRITE_FPDMA_QUEUED: DPRINTF(port, "NCQ writing %d sectors to LBA %"PRId64", tag %d\n", ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag); DPRINTF(port, "tag %d aio write %"PRId64"\n", ncq_tfs->tag, ncq_tfs->lba); dma_acct_start(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct, &ncq_tfs->sglist, BDRV_ACCT_WRITE); ncq_tfs->aiocb = dma_bdrv_write(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->sglist, ncq_tfs->lba, ncq_cb, ncq_tfs); break; default: DPRINTF(port, "error: tried to process non-NCQ command as NCQ\n"); qemu_sglist_destroy(&ncq_tfs->sglist); break; } } static int handle_cmd(AHCIState *s, int port, int slot) { IDEState *ide_state; uint32_t opts; uint64_t tbl_addr; AHCICmdHdr *cmd; uint8_t *cmd_fis; dma_addr_t cmd_len; if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { /* Engine currently busy, try again later */ DPRINTF(port, "engine busy\n"); return -1; } cmd = &((AHCICmdHdr *)s->dev[port].lst)[slot]; if (!s->dev[port].lst) { DPRINTF(port, "error: lst not given but cmd handled"); return -1; } /* remember current slot handle for later */ s->dev[port].cur_cmd = cmd; opts = le32_to_cpu(cmd->opts); tbl_addr = le64_to_cpu(cmd->tbl_addr); cmd_len = 0x80; cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, DMA_DIRECTION_FROM_DEVICE); if (!cmd_fis) { DPRINTF(port, "error: guest passed us an invalid cmd fis\n"); return -1; } /* The device we are working for */ ide_state = &s->dev[port].port.ifs[0]; if (!ide_state->bs) { DPRINTF(port, "error: guest accessed unused port"); goto out; } debug_print_fis(cmd_fis, 0x90); //debug_print_fis(cmd_fis, (opts & AHCI_CMD_HDR_CMD_FIS_LEN) * 4); switch (cmd_fis[0]) { case SATA_FIS_TYPE_REGISTER_H2D: break; default: DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x " "cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1], cmd_fis[2]); goto out; break; } switch (cmd_fis[1]) { case SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER: break; case 0: break; default: DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x " "cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1], cmd_fis[2]); goto out; break; } switch (s->dev[port].port_state) { case STATE_RUN: if (cmd_fis[15] & ATA_SRST) { s->dev[port].port_state = STATE_RESET; } break; case STATE_RESET: if (!(cmd_fis[15] & ATA_SRST)) { ahci_reset_port(s, port); } break; } if (cmd_fis[1] == SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER) { /* Check for NCQ command */ if ((cmd_fis[2] == READ_FPDMA_QUEUED) || (cmd_fis[2] == WRITE_FPDMA_QUEUED)) { process_ncq_command(s, port, cmd_fis, slot); goto out; } /* Decompose the FIS */ ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); ide_state->feature = cmd_fis[3]; if (!ide_state->nsector) { ide_state->nsector = 256; } if (ide_state->drive_kind != IDE_CD) { /* * We set the sector depending on the sector defined in the FIS. * Unfortunately, the spec isn't exactly obvious on this one. * * Apparently LBA48 commands set fis bytes 10,9,8,6,5,4 to the * 48 bit sector number. ATA_CMD_READ_DMA_EXT is an example for * such a command. * * Non-LBA48 commands however use 7[lower 4 bits],6,5,4 to define a * 28-bit sector number. ATA_CMD_READ_DMA is an example for such * a command. * * Since the spec doesn't explicitly state what each field should * do, I simply assume non-used fields as reserved and OR everything * together, independent of the command. */ ide_set_sector(ide_state, ((uint64_t)cmd_fis[10] << 40) | ((uint64_t)cmd_fis[9] << 32) /* This is used for LBA48 commands */ | ((uint64_t)cmd_fis[8] << 24) /* This is used for non-LBA48 commands */ | ((uint64_t)(cmd_fis[7] & 0xf) << 24) | ((uint64_t)cmd_fis[6] << 16) | ((uint64_t)cmd_fis[5] << 8) | cmd_fis[4]); } /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command * table to ide_state->io_buffer */ if (opts & AHCI_CMD_ATAPI) { memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); ide_state->lcyl = 0x14; ide_state->hcyl = 0xeb; debug_print_fis(ide_state->io_buffer, 0x10); ide_state->feature = IDE_FEATURE_DMA; s->dev[port].done_atapi_packet = false; /* XXX send PIO setup FIS */ } ide_state->error = 0; /* Reset transferred byte counter */ cmd->status = 0; /* We're ready to process the command in FIS byte 2. */ ide_exec_cmd(&s->dev[port].port, cmd_fis[2]); if ((s->dev[port].port.ifs[0].status & (READY_STAT|DRQ_STAT|BUSY_STAT)) == READY_STAT) { ahci_write_fis_d2h(&s->dev[port], cmd_fis); } } out: dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_FROM_DEVICE, cmd_len); if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { /* async command, complete later */ s->dev[port].busy_slot = slot; return -1; } /* done handling the command */ return 0; } /* DMA dev <-> ram */ static void ahci_start_transfer(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint32_t size = (uint32_t)(s->data_end - s->data_ptr); /* write == ram -> device */ uint32_t opts = le32_to_cpu(ad->cur_cmd->opts); int is_write = opts & AHCI_CMD_WRITE; int is_atapi = opts & AHCI_CMD_ATAPI; int has_sglist = 0; if (is_atapi && !ad->done_atapi_packet) { /* already prepopulated iobuffer */ ad->done_atapi_packet = true; goto out; } if (!ahci_populate_sglist(ad, &s->sg, 0)) { has_sglist = 1; } DPRINTF(ad->port_no, "%sing %d bytes on %s w/%s sglist\n", is_write ? "writ" : "read", size, is_atapi ? "atapi" : "ata", has_sglist ? "" : "o"); if (has_sglist && size) { if (is_write) { dma_buf_write(s->data_ptr, size, &s->sg); } else { dma_buf_read(s->data_ptr, size, &s->sg); } } /* update number of transferred bytes */ ad->cur_cmd->status = cpu_to_le32(le32_to_cpu(ad->cur_cmd->status) + size); out: /* declare that we processed everything */ s->data_ptr = s->data_end; if (has_sglist) { qemu_sglist_destroy(&s->sg); } s->end_transfer_func(s); if (!(s->status & DRQ_STAT)) { /* done with DMA */ ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_DSS); } } static void ahci_start_dma(IDEDMA *dma, IDEState *s, BlockDriverCompletionFunc *dma_cb) { #ifdef DEBUG_AHCI AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); #endif DPRINTF(ad->port_no, "\n"); s->io_buffer_offset = 0; dma_cb(s, 0); } static int ahci_dma_prepare_buf(IDEDMA *dma, int is_write) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; ahci_populate_sglist(ad, &s->sg, 0); s->io_buffer_size = s->sg.size; DPRINTF(ad->port_no, "len=%#x\n", s->io_buffer_size); return s->io_buffer_size != 0; } static int ahci_dma_rw_buf(IDEDMA *dma, int is_write) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint8_t *p = s->io_buffer + s->io_buffer_index; int l = s->io_buffer_size - s->io_buffer_index; if (ahci_populate_sglist(ad, &s->sg, s->io_buffer_offset)) { return 0; } if (is_write) { dma_buf_read(p, l, &s->sg); } else { dma_buf_write(p, l, &s->sg); } /* free sglist that was created in ahci_populate_sglist() */ qemu_sglist_destroy(&s->sg); /* update number of transferred bytes */ ad->cur_cmd->status = cpu_to_le32(le32_to_cpu(ad->cur_cmd->status) + l); s->io_buffer_index += l; s->io_buffer_offset += l; DPRINTF(ad->port_no, "len=%#x\n", l); return 1; } static int ahci_dma_set_unit(IDEDMA *dma, int unit) { /* only a single unit per link */ return 0; } static int ahci_dma_add_status(IDEDMA *dma, int status) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); DPRINTF(ad->port_no, "set status: %x\n", status); return 0; } static void ahci_async_cmd_done(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); DPRINTF(ad->port_no, "async cmd done\n"); /* update d2h status */ ahci_write_fis_d2h(ad, NULL); if (!ad->check_bh) { /* maybe we still have something to process, check later */ ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad); qemu_bh_schedule(ad->check_bh); } } static void ahci_irq_set(void *opaque, int n, int level) { } static void ahci_dma_restart_cb(void *opaque, int running, RunState state) { } static const IDEDMAOps ahci_dma_ops = { .start_dma = ahci_start_dma, .start_transfer = ahci_start_transfer, .prepare_buf = ahci_dma_prepare_buf, .rw_buf = ahci_dma_rw_buf, .set_unit = ahci_dma_set_unit, .add_status = ahci_dma_add_status, .async_cmd_done = ahci_async_cmd_done, .restart_cb = ahci_dma_restart_cb, }; void ahci_init(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports) { qemu_irq *irqs; int i; s->as = as; s->ports = ports; s->dev = g_malloc0(sizeof(AHCIDevice) * ports); ahci_reg_init(s); /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, "ahci", AHCI_MEM_BAR_SIZE); memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, "ahci-idp", 32); irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); for (i = 0; i < s->ports; i++) { AHCIDevice *ad = &s->dev[i]; ide_bus_new(&ad->port, sizeof(ad->port), qdev, i, 1); ide_init2(&ad->port, irqs[i]); ad->hba = s; ad->port_no = i; ad->port.dma = &ad->dma; ad->port.dma->ops = &ahci_dma_ops; } } void ahci_uninit(AHCIState *s) { memory_region_destroy(&s->mem); memory_region_destroy(&s->idp); g_free(s->dev); } void ahci_reset(AHCIState *s) { AHCIPortRegs *pr; int i; s->control_regs.irqstatus = 0; /* AHCI Enable (AE) * The implementation of this bit is dependent upon the value of the * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be * read-only and shall have a reset value of '1'. * * We set HOST_CAP_AHCI so we must enable AHCI at reset. */ s->control_regs.ghc = HOST_CTL_AHCI_EN; for (i = 0; i < s->ports; i++) { pr = &s->dev[i].port_regs; pr->irq_stat = 0; pr->irq_mask = 0; pr->scr_ctl = 0; pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; ahci_reset_port(s, i); } } static const VMStateDescription vmstate_ahci_device = { .name = "ahci port", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_IDE_BUS(port, AHCIDevice), VMSTATE_UINT32(port_state, AHCIDevice), VMSTATE_UINT32(finished, AHCIDevice), VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), VMSTATE_UINT32(port_regs.cmd, AHCIDevice), VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), VMSTATE_UINT32(port_regs.sig, AHCIDevice), VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), VMSTATE_BOOL(done_atapi_packet, AHCIDevice), VMSTATE_INT32(busy_slot, AHCIDevice), VMSTATE_BOOL(init_d2h_sent, AHCIDevice), VMSTATE_END_OF_LIST() }, }; static int ahci_state_post_load(void *opaque, int version_id) { int i; struct AHCIDevice *ad; AHCIState *s = opaque; for (i = 0; i < s->ports; i++) { ad = &s->dev[i]; AHCIPortRegs *pr = &ad->port_regs; map_page(s->as, &ad->lst, ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); map_page(s->as, &ad->res_fis, ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); /* * All pending i/o should be flushed out on a migrate. However, * we might not have cleared the busy_slot since this is done * in a bh. Also, issue i/o against any slots that are pending. */ if ((ad->busy_slot != -1) && !(ad->port.ifs[0].status & (BUSY_STAT|DRQ_STAT))) { pr->cmd_issue &= ~(1 << ad->busy_slot); ad->busy_slot = -1; } check_cmd(s, i); } return 0; } const VMStateDescription vmstate_ahci = { .name = "ahci", .version_id = 1, .post_load = ahci_state_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports, vmstate_ahci_device, AHCIDevice), VMSTATE_UINT32(control_regs.cap, AHCIState), VMSTATE_UINT32(control_regs.ghc, AHCIState), VMSTATE_UINT32(control_regs.irqstatus, AHCIState), VMSTATE_UINT32(control_regs.impl, AHCIState), VMSTATE_UINT32(control_regs.version, AHCIState), VMSTATE_UINT32(idp_index, AHCIState), VMSTATE_INT32_EQUAL(ports, AHCIState), VMSTATE_END_OF_LIST() }, }; #define TYPE_SYSBUS_AHCI "sysbus-ahci" #define SYSBUS_AHCI(obj) OBJECT_CHECK(SysbusAHCIState, (obj), TYPE_SYSBUS_AHCI) typedef struct SysbusAHCIState { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ AHCIState ahci; uint32_t num_ports; } SysbusAHCIState; static const VMStateDescription vmstate_sysbus_ahci = { .name = "sysbus-ahci", .unmigratable = 1, /* Still buggy under I/O load */ .fields = (VMStateField[]) { VMSTATE_AHCI(ahci, SysbusAHCIState), VMSTATE_END_OF_LIST() }, }; static void sysbus_ahci_reset(DeviceState *dev) { SysbusAHCIState *s = SYSBUS_AHCI(dev); ahci_reset(&s->ahci); } static void sysbus_ahci_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); SysbusAHCIState *s = SYSBUS_AHCI(dev); ahci_init(&s->ahci, dev, &address_space_memory, s->num_ports); sysbus_init_mmio(sbd, &s->ahci.mem); sysbus_init_irq(sbd, &s->ahci.irq); } static Property sysbus_ahci_properties[] = { DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1), DEFINE_PROP_END_OF_LIST(), }; static void sysbus_ahci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_ahci_realize; dc->vmsd = &vmstate_sysbus_ahci; dc->props = sysbus_ahci_properties; dc->reset = sysbus_ahci_reset; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo sysbus_ahci_info = { .name = TYPE_SYSBUS_AHCI, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SysbusAHCIState), .class_init = sysbus_ahci_class_init, }; static void sysbus_ahci_register_types(void) { type_register_static(&sysbus_ahci_info); } type_init(sysbus_ahci_register_types)