/* * m68k micro operations * * Copyright (c) 2006-2007 CodeSourcery * Written by Paul Brook * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "m68k-qreg.h" #ifndef offsetof #define offsetof(type, field) ((size_t) &((type *)0)->field) #endif static long qreg_offsets[] = { #define DEFO32(name, offset) offsetof(CPUState, offset), #define DEFR(name, reg, mode) -1, #define DEFF64(name, offset) offsetof(CPUState, offset), 0, #include "qregs.def" }; #define CPU_FP_STATUS env->fp_status #define RAISE_EXCEPTION(n) do { \ env->exception_index = n; \ cpu_loop_exit(); \ } while(0) #define get_op helper_get_op #define set_op helper_set_op #define get_opf64 helper_get_opf64 #define set_opf64 helper_set_opf64 uint32_t get_op(int qreg) { if (qreg >= TARGET_NUM_QREGS) { return env->qregs[qreg - TARGET_NUM_QREGS]; } else if (qreg == QREG_T0) { return T0; } else { return *(uint32_t *)(((long)env) + qreg_offsets[qreg]); } } void set_op(int qreg, uint32_t val) { if (qreg >= TARGET_NUM_QREGS) { env->qregs[qreg - TARGET_NUM_QREGS] = val; } else if (qreg == QREG_T0) { T0 = val; } else { *(uint32_t *)(((long)env) + qreg_offsets[qreg]) = val; } } float64 get_opf64(int qreg) { if (qreg < TARGET_NUM_QREGS) { return *(float64 *)(((long)env) + qreg_offsets[qreg]); } else { return *(float64 *)&env->qregs[qreg - TARGET_NUM_QREGS]; } } void set_opf64(int qreg, float64 val) { if (qreg < TARGET_NUM_QREGS) { *(float64 *)(((long)env) + qreg_offsets[qreg]) = val; } else { *(float64 *)&env->qregs[qreg - TARGET_NUM_QREGS] = val; } } #define OP(name) void OPPROTO glue(op_,name) (void) OP(mov32) { set_op(PARAM1, get_op(PARAM2)); FORCE_RET(); } OP(mov32_im) { set_op(PARAM1, PARAM2); FORCE_RET(); } OP(movf64) { set_opf64(PARAM1, get_opf64(PARAM2)); FORCE_RET(); } OP(zerof64) { set_opf64(PARAM1, 0); FORCE_RET(); } OP(add32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); set_op(PARAM1, op2 + op3); FORCE_RET(); } OP(sub32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); set_op(PARAM1, op2 - op3); FORCE_RET(); } OP(mul32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); set_op(PARAM1, op2 * op3); FORCE_RET(); } OP(not32) { uint32_t arg = get_op(PARAM2); set_op(PARAM1, ~arg); FORCE_RET(); } OP(neg32) { uint32_t arg = get_op(PARAM2); set_op(PARAM1, -arg); FORCE_RET(); } OP(bswap32) { uint32_t arg = get_op(PARAM2); arg = (arg >> 24) | (arg << 24) | ((arg >> 16) & 0xff00) | ((arg << 16) & 0xff0000); set_op(PARAM1, arg); FORCE_RET(); } OP(btest) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); if (op1 & op2) env->cc_dest &= ~CCF_Z; else env->cc_dest |= CCF_Z; FORCE_RET(); } OP(ff1) { uint32_t arg = get_op(PARAM2); int n; for (n = 32; arg; n--) arg >>= 1; set_op(PARAM1, n); FORCE_RET(); } OP(subx_cc) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); uint32_t res; if (env->cc_x) { env->cc_x = (op1 <= op2); env->cc_op = CC_OP_SUBX; res = op1 - (op2 + 1); } else { env->cc_x = (op1 < op2); env->cc_op = CC_OP_SUB; res = op1 - op2; } set_op(PARAM1, res); FORCE_RET(); } OP(addx_cc) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); uint32_t res; if (env->cc_x) { res = op1 + op2 + 1; env->cc_x = (res <= op2); env->cc_op = CC_OP_ADDX; } else { res = op1 + op2; env->cc_x = (res < op2); env->cc_op = CC_OP_ADD; } set_op(PARAM1, res); FORCE_RET(); } /* Logic ops. */ OP(and32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); set_op(PARAM1, op2 & op3); FORCE_RET(); } OP(or32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); set_op(PARAM1, op2 | op3); FORCE_RET(); } OP(xor32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); set_op(PARAM1, op2 ^ op3); FORCE_RET(); } /* Shifts. */ OP(shl32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); uint32_t result; result = op2 << op3; set_op(PARAM1, result); FORCE_RET(); } OP(shl_cc) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); uint32_t result; result = op1 << op2; set_op(PARAM1, result); env->cc_x = (op1 << (op2 - 1)) & 1; FORCE_RET(); } OP(shr32) { uint32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); uint32_t result; result = op2 >> op3; set_op(PARAM1, result); FORCE_RET(); } OP(shr_cc) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); uint32_t result; result = op1 >> op2; set_op(PARAM1, result); env->cc_x = (op1 >> (op2 - 1)) & 1; FORCE_RET(); } OP(sar32) { int32_t op2 = get_op(PARAM2); uint32_t op3 = get_op(PARAM3); uint32_t result; result = op2 >> op3; set_op(PARAM1, result); FORCE_RET(); } OP(sar_cc) { int32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); uint32_t result; result = op1 >> op2; set_op(PARAM1, result); env->cc_x = (op1 >> (op2 - 1)) & 1; FORCE_RET(); } /* Value extend. */ OP(ext8u32) { uint32_t op2 = get_op(PARAM2); set_op(PARAM1, (uint8_t)op2); FORCE_RET(); } OP(ext8s32) { uint32_t op2 = get_op(PARAM2); set_op(PARAM1, (int8_t)op2); FORCE_RET(); } OP(ext16u32) { uint32_t op2 = get_op(PARAM2); set_op(PARAM1, (uint16_t)op2); FORCE_RET(); } OP(ext16s32) { uint32_t op2 = get_op(PARAM2); set_op(PARAM1, (int16_t)op2); FORCE_RET(); } OP(flush_flags) { cpu_m68k_flush_flags(env, env->cc_op); FORCE_RET(); } OP(divu) { uint32_t num; uint32_t den; uint32_t quot; uint32_t rem; uint32_t flags; num = env->div1; den = env->div2; /* ??? This needs to make sure the throwing location is accurate. */ if (den == 0) RAISE_EXCEPTION(EXCP_DIV0); quot = num / den; rem = num % den; flags = 0; /* Avoid using a PARAM1 of zero. This breaks dyngen because it uses the address of a symbol, and gcc knows symbols can't have address zero. */ if (PARAM1 == 2 && quot > 0xffff) flags |= CCF_V; if (quot == 0) flags |= CCF_Z; else if ((int32_t)quot < 0) flags |= CCF_N; env->div1 = quot; env->div2 = rem; env->cc_dest = flags; FORCE_RET(); } OP(divs) { int32_t num; int32_t den; int32_t quot; int32_t rem; int32_t flags; num = env->div1; den = env->div2; if (den == 0) RAISE_EXCEPTION(EXCP_DIV0); quot = num / den; rem = num % den; flags = 0; if (PARAM1 == 2 && quot != (int16_t)quot) flags |= CCF_V; if (quot == 0) flags |= CCF_Z; else if (quot < 0) flags |= CCF_N; env->div1 = quot; env->div2 = rem; env->cc_dest = flags; FORCE_RET(); } /* Halt is special because it may be a semihosting call. */ OP(halt) { RAISE_EXCEPTION(EXCP_HALT_INSN); FORCE_RET(); } OP(stop) { env->halted = 1; RAISE_EXCEPTION(EXCP_HLT); FORCE_RET(); } OP(raise_exception) { RAISE_EXCEPTION(PARAM1); FORCE_RET(); } /* Floating point comparison sets flags differently to other instructions. */ OP(sub_cmpf64) { float64 src0; float64 src1; src0 = get_opf64(PARAM2); src1 = get_opf64(PARAM3); set_opf64(PARAM1, helper_sub_cmpf64(env, src0, src1)); FORCE_RET(); } OP(update_xflag_tst) { uint32_t op1 = get_op(PARAM1); env->cc_x = op1; FORCE_RET(); } OP(update_xflag_lt) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); env->cc_x = (op1 < op2); FORCE_RET(); } OP(get_xflag) { set_op(PARAM1, env->cc_x); FORCE_RET(); } OP(logic_cc) { uint32_t op1 = get_op(PARAM1); env->cc_dest = op1; FORCE_RET(); } OP(update_cc_add) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); env->cc_dest = op1; env->cc_src = op2; FORCE_RET(); } OP(fp_result) { env->fp_result = get_opf64(PARAM1); FORCE_RET(); } OP(set_sr) { env->sr = get_op(PARAM1) & 0xffff; m68k_switch_sp(env); FORCE_RET(); } OP(jmp) { GOTO_LABEL_PARAM(1); } /* These ops involve a function call, which probably requires a stack frame and breaks things on some hosts. */ OP(jmp_z32) { uint32_t arg = get_op(PARAM1); if (arg == 0) GOTO_LABEL_PARAM(2); FORCE_RET(); } OP(jmp_nz32) { uint32_t arg = get_op(PARAM1); if (arg != 0) GOTO_LABEL_PARAM(2); FORCE_RET(); } OP(jmp_s32) { int32_t arg = get_op(PARAM1); if (arg < 0) GOTO_LABEL_PARAM(2); FORCE_RET(); } OP(jmp_ns32) { int32_t arg = get_op(PARAM1); if (arg >= 0) GOTO_LABEL_PARAM(2); FORCE_RET(); } void OPPROTO op_goto_tb0(void) { GOTO_TB(op_goto_tb0, PARAM1, 0); } void OPPROTO op_goto_tb1(void) { GOTO_TB(op_goto_tb1, PARAM1, 1); } OP(exit_tb) { EXIT_TB(); } /* Floating point. */ OP(f64_to_i32) { set_op(PARAM1, float64_to_int32(get_opf64(PARAM2), &CPU_FP_STATUS)); FORCE_RET(); } OP(f64_to_f32) { union { float32 f; uint32_t i; } u; u.f = float64_to_float32(get_opf64(PARAM2), &CPU_FP_STATUS); set_op(PARAM1, u.i); FORCE_RET(); } OP(i32_to_f64) { set_opf64(PARAM1, int32_to_float64(get_op(PARAM2), &CPU_FP_STATUS)); FORCE_RET(); } OP(f32_to_f64) { union { float32 f; uint32_t i; } u; u.i = get_op(PARAM2); set_opf64(PARAM1, float32_to_float64(u.f, &CPU_FP_STATUS)); FORCE_RET(); } OP(absf64) { float64 op0 = get_opf64(PARAM2); set_opf64(PARAM1, float64_abs(op0)); FORCE_RET(); } OP(chsf64) { float64 op0 = get_opf64(PARAM2); set_opf64(PARAM1, float64_chs(op0)); FORCE_RET(); } OP(sqrtf64) { float64 op0 = get_opf64(PARAM2); set_opf64(PARAM1, float64_sqrt(op0, &CPU_FP_STATUS)); FORCE_RET(); } OP(addf64) { float64 op0 = get_opf64(PARAM2); float64 op1 = get_opf64(PARAM3); set_opf64(PARAM1, float64_add(op0, op1, &CPU_FP_STATUS)); FORCE_RET(); } OP(subf64) { float64 op0 = get_opf64(PARAM2); float64 op1 = get_opf64(PARAM3); set_opf64(PARAM1, float64_sub(op0, op1, &CPU_FP_STATUS)); FORCE_RET(); } OP(mulf64) { float64 op0 = get_opf64(PARAM2); float64 op1 = get_opf64(PARAM3); set_opf64(PARAM1, float64_mul(op0, op1, &CPU_FP_STATUS)); FORCE_RET(); } OP(divf64) { float64 op0 = get_opf64(PARAM2); float64 op1 = get_opf64(PARAM3); set_opf64(PARAM1, float64_div(op0, op1, &CPU_FP_STATUS)); FORCE_RET(); } OP(iround_f64) { float64 op0 = get_opf64(PARAM2); set_opf64(PARAM1, float64_round_to_int(op0, &CPU_FP_STATUS)); FORCE_RET(); } OP(itrunc_f64) { float64 op0 = get_opf64(PARAM2); set_opf64(PARAM1, float64_trunc_to_int(op0, &CPU_FP_STATUS)); FORCE_RET(); } OP(compare_quietf64) { float64 op0 = get_opf64(PARAM2); float64 op1 = get_opf64(PARAM3); set_op(PARAM1, float64_compare_quiet(op0, op1, &CPU_FP_STATUS)); FORCE_RET(); } OP(movec) { int op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); helper_movec(env, op1, op2); } /* Memory access. */ #define MEMSUFFIX _raw #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_mem.h" #endif /* MAC unit. */ /* TODO: The MAC instructions use 64-bit arithmetic fairly extensively. This results in fairly large ops (and sometimes other issues) on 32-bit hosts. Maybe move most of them into helpers. */ OP(macmuls) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); int64_t product; int64_t res; product = (uint64_t)op1 * op2; res = (product << 24) >> 24; if (res != product) { env->macsr |= MACSR_V; if (env->macsr & MACSR_OMC) { /* Make sure the accumulate operation overflows. */ if (product < 0) res = ~(1ll << 50); else res = 1ll << 50; } } env->mactmp = res; FORCE_RET(); } OP(macmulu) { uint32_t op1 = get_op(PARAM1); uint32_t op2 = get_op(PARAM2); uint64_t product; product = (uint64_t)op1 * op2; if (product & (0xffffffull << 40)) { env->macsr |= MACSR_V; if (env->macsr & MACSR_OMC) { /* Make sure the accumulate operation overflows. */ product = 1ll << 50; } else { product &= ((1ull << 40) - 1); } } env->mactmp = product; FORCE_RET(); } OP(macmulf) { int32_t op1 = get_op(PARAM1); int32_t op2 = get_op(PARAM2); uint64_t product; uint32_t remainder; product = (uint64_t)op1 * op2; if (env->macsr & MACSR_RT) { remainder = product & 0xffffff; product >>= 24; if (remainder > 0x800000) product++; else if (remainder == 0x800000) product += (product & 1); } else { product >>= 24; } env->mactmp = product; FORCE_RET(); } OP(macshl) { env->mactmp <<= 1; } OP(macshr) { env->mactmp >>= 1; } OP(macadd) { int acc = PARAM1; env->macc[acc] += env->mactmp; FORCE_RET(); } OP(macsub) { int acc = PARAM1; env->macc[acc] -= env->mactmp; FORCE_RET(); } OP(macsats) { int acc = PARAM1; int64_t sum; int64_t result; sum = env->macc[acc]; result = (sum << 16) >> 16; if (result != sum) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_V) { env->macsr |= MACSR_PAV0 << acc; if (env->macsr & MACSR_OMC) { /* The result is saturated to 32 bits, despite overflow occuring at 48 bits. Seems weird, but that's what the hardware docs say. */ result = (result >> 63) ^ 0x7fffffff; } } env->macc[acc] = result; FORCE_RET(); } OP(macsatu) { int acc = PARAM1; uint64_t sum; sum = env->macc[acc]; if (sum & (0xffffull << 48)) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_V) { env->macsr |= MACSR_PAV0 << acc; if (env->macsr & MACSR_OMC) { if (sum > (1ull << 53)) sum = 0; else sum = (1ull << 48) - 1; } else { sum &= ((1ull << 48) - 1); } } FORCE_RET(); } OP(macsatf) { int acc = PARAM1; int64_t sum; int64_t result; sum = env->macc[acc]; result = (sum << 16) >> 16; if (result != sum) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_V) { env->macsr |= MACSR_PAV0 << acc; if (env->macsr & MACSR_OMC) { result = (result >> 63) ^ 0x7fffffffffffll; } } env->macc[acc] = result; FORCE_RET(); } OP(mac_clear_flags) { env->macsr &= ~(MACSR_V | MACSR_Z | MACSR_N | MACSR_EV); } OP(mac_set_flags) { int acc = PARAM1; uint64_t val; val = env->macc[acc]; if (val == 0) env->macsr |= MACSR_Z; else if (val & (1ull << 47)); env->macsr |= MACSR_N; if (env->macsr & (MACSR_PAV0 << acc)) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_FI) { val = ((int64_t)val) >> 40; if (val != 0 && val != -1) env->macsr |= MACSR_EV; } else if (env->macsr & MACSR_SU) { val = ((int64_t)val) >> 32; if (val != 0 && val != -1) env->macsr |= MACSR_EV; } else { if ((val >> 32) != 0) env->macsr |= MACSR_EV; } FORCE_RET(); } OP(get_macf) { int acc = PARAM2; int64_t val; int rem; uint32_t result; val = env->macc[acc]; if (env->macsr & MACSR_SU) { /* 16-bit rounding. */ rem = val & 0xffffff; val = (val >> 24) & 0xffffu; if (rem > 0x800000) val++; else if (rem == 0x800000) val += (val & 1); } else if (env->macsr & MACSR_RT) { /* 32-bit rounding. */ rem = val & 0xff; val >>= 8; if (rem > 0x80) val++; else if (rem == 0x80) val += (val & 1); } else { /* No rounding. */ val >>= 8; } if (env->macsr & MACSR_OMC) { /* Saturate. */ if (env->macsr & MACSR_SU) { if (val != (uint16_t) val) { result = ((val >> 63) ^ 0x7fff) & 0xffff; } else { result = val & 0xffff; } } else { if (val != (uint32_t)val) { result = ((uint32_t)(val >> 63) & 0x7fffffff); } else { result = (uint32_t)val; } } } else { /* No saturation. */ if (env->macsr & MACSR_SU) { result = val & 0xffff; } else { result = (uint32_t)val; } } set_op(PARAM1, result); FORCE_RET(); } OP(get_maci) { int acc = PARAM2; set_op(PARAM1, (uint32_t)env->macc[acc]); FORCE_RET(); } OP(get_macs) { int acc = PARAM2; int64_t val = env->macc[acc]; uint32_t result; if (val == (int32_t)val) { result = (int32_t)val; } else { result = (val >> 61) ^ 0x7fffffff; } set_op(PARAM1, result); FORCE_RET(); } OP(get_macu) { int acc = PARAM2; uint64_t val = env->macc[acc]; uint32_t result; if ((val >> 32) == 0) { result = (uint32_t)val; } else { result = 0xffffffffu; } set_op(PARAM1, result); FORCE_RET(); } OP(clear_mac) { int acc = PARAM1; env->macc[acc] = 0; env->macsr &= ~(MACSR_PAV0 << acc); FORCE_RET(); } OP(move_mac) { int dest = PARAM1; int src = PARAM2; uint32_t mask; env->macc[dest] = env->macc[src]; mask = MACSR_PAV0 << dest; if (env->macsr & (MACSR_PAV0 << src)) env->macsr |= mask; else env->macsr &= ~mask; FORCE_RET(); } OP(get_mac_extf) { uint32_t val; int acc = PARAM2; val = env->macc[acc] & 0x00ff; val = (env->macc[acc] >> 32) & 0xff00; val |= (env->macc[acc + 1] << 16) & 0x00ff0000; val |= (env->macc[acc + 1] >> 16) & 0xff000000; set_op(PARAM1, val); FORCE_RET(); } OP(get_mac_exti) { uint32_t val; int acc = PARAM2; val = (env->macc[acc] >> 32) & 0xffff; val |= (env->macc[acc + 1] >> 16) & 0xffff0000; set_op(PARAM1, val); FORCE_RET(); } OP(set_macf) { int acc = PARAM2; int32_t val = get_op(PARAM1); env->macc[acc] = ((int64_t)val) << 8; env->macsr &= ~(MACSR_PAV0 << acc); FORCE_RET(); } OP(set_macs) { int acc = PARAM2; int32_t val = get_op(PARAM1); env->macc[acc] = val; env->macsr &= ~(MACSR_PAV0 << acc); FORCE_RET(); } OP(set_macu) { int acc = PARAM2; uint32_t val = get_op(PARAM1); env->macc[acc] = val; env->macsr &= ~(MACSR_PAV0 << acc); FORCE_RET(); } OP(set_mac_extf) { int acc = PARAM2; int32_t val = get_op(PARAM1); int64_t res; int32_t tmp; res = env->macc[acc] & 0xffffffff00ull; tmp = (int16_t)(val & 0xff00); res |= ((int64_t)tmp) << 32; res |= val & 0xff; env->macc[acc] = res; res = env->macc[acc + 1] & 0xffffffff00ull; tmp = (val & 0xff000000); res |= ((int64_t)tmp) << 16; res |= (val >> 16) & 0xff; env->macc[acc + 1] = res; } OP(set_mac_exts) { int acc = PARAM2; int32_t val = get_op(PARAM1); int64_t res; int32_t tmp; res = (uint32_t)env->macc[acc]; tmp = (int16_t)val; res |= ((int64_t)tmp) << 32; env->macc[acc] = res; res = (uint32_t)env->macc[acc + 1]; tmp = val & 0xffff0000; res |= (int64_t)tmp << 16; env->macc[acc + 1] = res; } OP(set_mac_extu) { int acc = PARAM2; int32_t val = get_op(PARAM1); uint64_t res; res = (uint32_t)env->macc[acc]; res |= ((uint64_t)(val & 0xffff)) << 32; env->macc[acc] = res; res = (uint32_t)env->macc[acc + 1]; res |= (uint64_t)(val & 0xffff0000) << 16; env->macc[acc + 1] = res; } OP(set_macsr) { m68k_set_macsr(env, get_op(PARAM1)); }