/* * RISC-V Control and Status Registers. * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/timer.h" #include "cpu.h" #include "tcg/tcg-cpu.h" #include "pmu.h" #include "time_helper.h" #include "exec/exec-all.h" #include "exec/tb-flush.h" #include "sysemu/cpu-timers.h" #include "qemu/guest-random.h" #include "qapi/error.h" /* CSR function table public API */ void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) { *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; } void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) { csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; } /* Predicates */ #if !defined(CONFIG_USER_ONLY) RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) { bool virt = env->virt_enabled; if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { return RISCV_EXCP_NONE; } if (!(env->mstateen[index] & bit)) { return RISCV_EXCP_ILLEGAL_INST; } if (virt) { if (!(env->hstateen[index] & bit)) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } } if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { if (!(env->sstateen[index] & bit)) { return RISCV_EXCP_ILLEGAL_INST; } } return RISCV_EXCP_NONE; } #endif static RISCVException fs(CPURISCVState *env, int csrno) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !riscv_cpu_fp_enabled(env) && !riscv_cpu_cfg(env)->ext_zfinx) { return RISCV_EXCP_ILLEGAL_INST; } if (!env->debugger && !riscv_cpu_fp_enabled(env)) { return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); } #endif return RISCV_EXCP_NONE; } static RISCVException vs(CPURISCVState *env, int csrno) { if (riscv_cpu_cfg(env)->ext_zve32x) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !riscv_cpu_vector_enabled(env)) { return RISCV_EXCP_ILLEGAL_INST; } #endif return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException ctr(CPURISCVState *env, int csrno) { #if !defined(CONFIG_USER_ONLY) RISCVCPU *cpu = env_archcpu(env); int ctr_index; target_ulong ctr_mask; int base_csrno = CSR_CYCLE; bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; if (rv32 && csrno >= CSR_CYCLEH) { /* Offset for RV32 hpmcounternh counters */ base_csrno += 0x80; } ctr_index = csrno - base_csrno; ctr_mask = BIT(ctr_index); if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { if (!riscv_cpu_cfg(env)->ext_zicntr) { return RISCV_EXCP_ILLEGAL_INST; } goto skip_ext_pmu_check; } if (!(cpu->pmu_avail_ctrs & ctr_mask)) { /* No counter is enabled in PMU or the counter is out of range */ return RISCV_EXCP_ILLEGAL_INST; } skip_ext_pmu_check: if (env->debugger) { return RISCV_EXCP_NONE; } if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { return RISCV_EXCP_ILLEGAL_INST; } if (env->virt_enabled) { if (!get_field(env->hcounteren, ctr_mask) || (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } } if (riscv_has_ext(env, RVS) && env->priv == PRV_U && !get_field(env->scounteren, ctr_mask)) { return RISCV_EXCP_ILLEGAL_INST; } #endif return RISCV_EXCP_NONE; } static RISCVException ctr32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return ctr(env, csrno); } static RISCVException zcmt(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_zcmt) { return RISCV_EXCP_ILLEGAL_INST; } #if !defined(CONFIG_USER_ONLY) RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); if (ret != RISCV_EXCP_NONE) { return ret; } #endif return RISCV_EXCP_NONE; } #if !defined(CONFIG_USER_ONLY) static RISCVException mctr(CPURISCVState *env, int csrno) { RISCVCPU *cpu = env_archcpu(env); uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; int ctr_index; int base_csrno = CSR_MHPMCOUNTER3; if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { /* Offset for RV32 mhpmcounternh counters */ csrno -= 0x80; } g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); ctr_index = csrno - base_csrno; if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { /* The PMU is not enabled or counter is out of range */ return RISCV_EXCP_ILLEGAL_INST; } return RISCV_EXCP_NONE; } static RISCVException mctr32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return mctr(env, csrno); } static RISCVException sscofpmf(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_sscofpmf) { return RISCV_EXCP_ILLEGAL_INST; } return RISCV_EXCP_NONE; } static RISCVException any(CPURISCVState *env, int csrno) { return RISCV_EXCP_NONE; } static RISCVException any32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return any(env, csrno); } static RISCVException aia_any(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_smaia) { return RISCV_EXCP_ILLEGAL_INST; } return any(env, csrno); } static RISCVException aia_any32(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_smaia) { return RISCV_EXCP_ILLEGAL_INST; } return any32(env, csrno); } static RISCVException smode(CPURISCVState *env, int csrno) { if (riscv_has_ext(env, RVS)) { return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException smode32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return smode(env, csrno); } static RISCVException aia_smode(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_ssaia) { return RISCV_EXCP_ILLEGAL_INST; } return smode(env, csrno); } static RISCVException aia_smode32(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_ssaia) { return RISCV_EXCP_ILLEGAL_INST; } return smode32(env, csrno); } static RISCVException hmode(CPURISCVState *env, int csrno) { if (riscv_has_ext(env, RVH)) { return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException hmode32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return hmode(env, csrno); } static RISCVException umode(CPURISCVState *env, int csrno) { if (riscv_has_ext(env, RVU)) { return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException umode32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return umode(env, csrno); } static RISCVException mstateen(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_smstateen) { return RISCV_EXCP_ILLEGAL_INST; } return any(env, csrno); } static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) { if (!riscv_cpu_cfg(env)->ext_smstateen) { return RISCV_EXCP_ILLEGAL_INST; } RISCVException ret = hmode(env, csrno); if (ret != RISCV_EXCP_NONE) { return ret; } if (env->debugger) { return RISCV_EXCP_NONE; } if (env->priv < PRV_M) { if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { return RISCV_EXCP_ILLEGAL_INST; } } return RISCV_EXCP_NONE; } static RISCVException hstateen(CPURISCVState *env, int csrno) { return hstateen_pred(env, csrno, CSR_HSTATEEN0); } static RISCVException hstateenh(CPURISCVState *env, int csrno) { return hstateen_pred(env, csrno, CSR_HSTATEEN0H); } static RISCVException sstateen(CPURISCVState *env, int csrno) { bool virt = env->virt_enabled; int index = csrno - CSR_SSTATEEN0; if (!riscv_cpu_cfg(env)->ext_smstateen) { return RISCV_EXCP_ILLEGAL_INST; } RISCVException ret = smode(env, csrno); if (ret != RISCV_EXCP_NONE) { return ret; } if (env->debugger) { return RISCV_EXCP_NONE; } if (env->priv < PRV_M) { if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { return RISCV_EXCP_ILLEGAL_INST; } if (virt) { if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } } } return RISCV_EXCP_NONE; } static RISCVException sstc(CPURISCVState *env, int csrno) { bool hmode_check = false; if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { hmode_check = true; } RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); if (ret != RISCV_EXCP_NONE) { return ret; } if (env->debugger) { return RISCV_EXCP_NONE; } if (env->priv == PRV_M) { return RISCV_EXCP_NONE; } /* * No need of separate function for rv32 as menvcfg stores both menvcfg * menvcfgh for RV32. */ if (!(get_field(env->mcounteren, COUNTEREN_TM) && get_field(env->menvcfg, MENVCFG_STCE))) { return RISCV_EXCP_ILLEGAL_INST; } if (env->virt_enabled) { if (!(get_field(env->hcounteren, COUNTEREN_TM) && get_field(env->henvcfg, HENVCFG_STCE))) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } } return RISCV_EXCP_NONE; } static RISCVException sstc_32(CPURISCVState *env, int csrno) { if (riscv_cpu_mxl(env) != MXL_RV32) { return RISCV_EXCP_ILLEGAL_INST; } return sstc(env, csrno); } static RISCVException satp(CPURISCVState *env, int csrno) { if (env->priv == PRV_S && !env->virt_enabled && get_field(env->mstatus, MSTATUS_TVM)) { return RISCV_EXCP_ILLEGAL_INST; } if (env->priv == PRV_S && env->virt_enabled && get_field(env->hstatus, HSTATUS_VTVM)) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } return smode(env, csrno); } static RISCVException hgatp(CPURISCVState *env, int csrno) { if (env->priv == PRV_S && !env->virt_enabled && get_field(env->mstatus, MSTATUS_TVM)) { return RISCV_EXCP_ILLEGAL_INST; } return hmode(env, csrno); } /* Checks if PointerMasking registers could be accessed */ static RISCVException pointer_masking(CPURISCVState *env, int csrno) { /* Check if j-ext is present */ if (riscv_has_ext(env, RVJ)) { return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException aia_hmode(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_ssaia) { return RISCV_EXCP_ILLEGAL_INST; } return hmode(env, csrno); } static RISCVException aia_hmode32(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_ssaia) { return RISCV_EXCP_ILLEGAL_INST; } return hmode32(env, csrno); } static RISCVException pmp(CPURISCVState *env, int csrno) { if (riscv_cpu_cfg(env)->pmp) { if (csrno <= CSR_PMPCFG3) { uint32_t reg_index = csrno - CSR_PMPCFG0; /* TODO: RV128 restriction check */ if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { return RISCV_EXCP_ILLEGAL_INST; } } return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException have_mseccfg(CPURISCVState *env, int csrno) { if (riscv_cpu_cfg(env)->ext_smepmp) { return RISCV_EXCP_NONE; } if (riscv_cpu_cfg(env)->ext_zkr) { return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } static RISCVException debug(CPURISCVState *env, int csrno) { if (riscv_cpu_cfg(env)->debug) { return RISCV_EXCP_NONE; } return RISCV_EXCP_ILLEGAL_INST; } #endif static RISCVException seed(CPURISCVState *env, int csrno) { if (!riscv_cpu_cfg(env)->ext_zkr) { return RISCV_EXCP_ILLEGAL_INST; } #if !defined(CONFIG_USER_ONLY) if (env->debugger) { return RISCV_EXCP_NONE; } /* * With a CSR read-write instruction: * 1) The seed CSR is always available in machine mode as normal. * 2) Attempted access to seed from virtual modes VS and VU always raises * an exception(virtual instruction exception only if mseccfg.sseed=1). * 3) Without the corresponding access control bit set to 1, any attempted * access to seed from U, S or HS modes will raise an illegal instruction * exception. */ if (env->priv == PRV_M) { return RISCV_EXCP_NONE; } else if (env->virt_enabled) { if (env->mseccfg & MSECCFG_SSEED) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } else { return RISCV_EXCP_ILLEGAL_INST; } } else { if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { return RISCV_EXCP_NONE; } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { return RISCV_EXCP_NONE; } else { return RISCV_EXCP_ILLEGAL_INST; } } #else return RISCV_EXCP_NONE; #endif } /* User Floating-Point CSRs */ static RISCVException read_fflags(CPURISCVState *env, int csrno, target_ulong *val) { *val = riscv_cpu_get_fflags(env); return RISCV_EXCP_NONE; } static RISCVException write_fflags(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVF)) { env->mstatus |= MSTATUS_FS; } #endif riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); return RISCV_EXCP_NONE; } static RISCVException read_frm(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->frm; return RISCV_EXCP_NONE; } static RISCVException write_frm(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVF)) { env->mstatus |= MSTATUS_FS; } #endif env->frm = val & (FSR_RD >> FSR_RD_SHIFT); return RISCV_EXCP_NONE; } static RISCVException read_fcsr(CPURISCVState *env, int csrno, target_ulong *val) { *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) | (env->frm << FSR_RD_SHIFT); return RISCV_EXCP_NONE; } static RISCVException write_fcsr(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVF)) { env->mstatus |= MSTATUS_FS; } #endif env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); return RISCV_EXCP_NONE; } static RISCVException read_vtype(CPURISCVState *env, int csrno, target_ulong *val) { uint64_t vill; switch (env->xl) { case MXL_RV32: vill = (uint32_t)env->vill << 31; break; case MXL_RV64: vill = (uint64_t)env->vill << 63; break; default: g_assert_not_reached(); } *val = (target_ulong)vill | env->vtype; return RISCV_EXCP_NONE; } static RISCVException read_vl(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vl; return RISCV_EXCP_NONE; } static RISCVException read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) { *val = riscv_cpu_cfg(env)->vlenb; return RISCV_EXCP_NONE; } static RISCVException read_vxrm(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vxrm; return RISCV_EXCP_NONE; } static RISCVException write_vxrm(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) env->mstatus |= MSTATUS_VS; #endif env->vxrm = val; return RISCV_EXCP_NONE; } static RISCVException read_vxsat(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vxsat; return RISCV_EXCP_NONE; } static RISCVException write_vxsat(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) env->mstatus |= MSTATUS_VS; #endif env->vxsat = val; return RISCV_EXCP_NONE; } static RISCVException read_vstart(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstart; return RISCV_EXCP_NONE; } static RISCVException write_vstart(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) env->mstatus |= MSTATUS_VS; #endif /* * The vstart CSR is defined to have only enough writable bits * to hold the largest element index, i.e. lg2(VLEN) bits. */ env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); return RISCV_EXCP_NONE; } static RISCVException read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) { *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); return RISCV_EXCP_NONE; } static RISCVException write_vcsr(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) env->mstatus |= MSTATUS_VS; #endif env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; return RISCV_EXCP_NONE; } /* User Timers and Counters */ static target_ulong get_ticks(bool shift) { int64_t val; target_ulong result; #if !defined(CONFIG_USER_ONLY) if (icount_enabled()) { val = icount_get(); } else { val = cpu_get_host_ticks(); } #else val = cpu_get_host_ticks(); #endif if (shift) { result = val >> 32; } else { result = val; } return result; } #if defined(CONFIG_USER_ONLY) static RISCVException read_time(CPURISCVState *env, int csrno, target_ulong *val) { *val = cpu_get_host_ticks(); return RISCV_EXCP_NONE; } static RISCVException read_timeh(CPURISCVState *env, int csrno, target_ulong *val) { *val = cpu_get_host_ticks() >> 32; return RISCV_EXCP_NONE; } static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) { *val = get_ticks(false); return RISCV_EXCP_NONE; } static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) { *val = get_ticks(true); return RISCV_EXCP_NONE; } #else /* CONFIG_USER_ONLY */ static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) { int evt_index = csrno - CSR_MCOUNTINHIBIT; *val = env->mhpmevent_val[evt_index]; return RISCV_EXCP_NONE; } static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) { int evt_index = csrno - CSR_MCOUNTINHIBIT; uint64_t mhpmevt_val = val; env->mhpmevent_val[evt_index] = val; if (riscv_cpu_mxl(env) == MXL_RV32) { mhpmevt_val = mhpmevt_val | ((uint64_t)env->mhpmeventh_val[evt_index] << 32); } riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); return RISCV_EXCP_NONE; } static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) { int evt_index = csrno - CSR_MHPMEVENT3H + 3; *val = env->mhpmeventh_val[evt_index]; return RISCV_EXCP_NONE; } static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) { int evt_index = csrno - CSR_MHPMEVENT3H + 3; uint64_t mhpmevth_val = val; uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); env->mhpmeventh_val[evt_index] = val; riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); return RISCV_EXCP_NONE; } static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) { int ctr_idx = csrno - CSR_MCYCLE; PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; uint64_t mhpmctr_val = val; counter->mhpmcounter_val = val; if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { counter->mhpmcounter_prev = get_ticks(false); if (ctr_idx > 2) { if (riscv_cpu_mxl(env) == MXL_RV32) { mhpmctr_val = mhpmctr_val | ((uint64_t)counter->mhpmcounterh_val << 32); } riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); } } else { /* Other counters can keep incrementing from the given value */ counter->mhpmcounter_prev = val; } return RISCV_EXCP_NONE; } static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) { int ctr_idx = csrno - CSR_MCYCLEH; PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; uint64_t mhpmctr_val = counter->mhpmcounter_val; uint64_t mhpmctrh_val = val; counter->mhpmcounterh_val = val; mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { counter->mhpmcounterh_prev = get_ticks(true); if (ctr_idx > 2) { riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); } } else { counter->mhpmcounterh_prev = val; } return RISCV_EXCP_NONE; } static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, bool upper_half, uint32_t ctr_idx) { PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : counter->mhpmcounter_prev; target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : counter->mhpmcounter_val; if (get_field(env->mcountinhibit, BIT(ctr_idx))) { /* * Counter should not increment if inhibit bit is set. We can't really * stop the icount counting. Just return the counter value written by * the supervisor to indicate that counter was not incremented. */ if (!counter->started) { *val = ctr_val; return RISCV_EXCP_NONE; } else { /* Mark that the counter has been stopped */ counter->started = false; } } /* * The kernel computes the perf delta by subtracting the current value from * the value it initialized previously (ctr_val). */ if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { *val = get_ticks(upper_half) - ctr_prev + ctr_val; } else { *val = ctr_val; } return RISCV_EXCP_NONE; } static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) { uint16_t ctr_index; if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { ctr_index = csrno - CSR_MCYCLE; } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { ctr_index = csrno - CSR_CYCLE; } else { return RISCV_EXCP_ILLEGAL_INST; } return riscv_pmu_read_ctr(env, val, false, ctr_index); } static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) { uint16_t ctr_index; if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { ctr_index = csrno - CSR_MCYCLEH; } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { ctr_index = csrno - CSR_CYCLEH; } else { return RISCV_EXCP_ILLEGAL_INST; } return riscv_pmu_read_ctr(env, val, true, ctr_index); } static RISCVException read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) { int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; int i; *val = 0; target_ulong *mhpm_evt_val; uint64_t of_bit_mask; if (riscv_cpu_mxl(env) == MXL_RV32) { mhpm_evt_val = env->mhpmeventh_val; of_bit_mask = MHPMEVENTH_BIT_OF; } else { mhpm_evt_val = env->mhpmevent_val; of_bit_mask = MHPMEVENT_BIT_OF; } for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { if ((get_field(env->mcounteren, BIT(i))) && (mhpm_evt_val[i] & of_bit_mask)) { *val |= BIT(i); } } return RISCV_EXCP_NONE; } static RISCVException read_time(CPURISCVState *env, int csrno, target_ulong *val) { uint64_t delta = env->virt_enabled ? env->htimedelta : 0; if (!env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; return RISCV_EXCP_NONE; } static RISCVException read_timeh(CPURISCVState *env, int csrno, target_ulong *val) { uint64_t delta = env->virt_enabled ? env->htimedelta : 0; if (!env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; return RISCV_EXCP_NONE; } static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstimecmp; return RISCV_EXCP_NONE; } static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstimecmp >> 32; return RISCV_EXCP_NONE; } static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, target_ulong val) { if (riscv_cpu_mxl(env) == MXL_RV32) { env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); } else { env->vstimecmp = val; } riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, env->htimedelta, MIP_VSTIP); return RISCV_EXCP_NONE; } static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, target_ulong val) { env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, env->htimedelta, MIP_VSTIP); return RISCV_EXCP_NONE; } static RISCVException read_stimecmp(CPURISCVState *env, int csrno, target_ulong *val) { if (env->virt_enabled) { *val = env->vstimecmp; } else { *val = env->stimecmp; } return RISCV_EXCP_NONE; } static RISCVException read_stimecmph(CPURISCVState *env, int csrno, target_ulong *val) { if (env->virt_enabled) { *val = env->vstimecmp >> 32; } else { *val = env->stimecmp >> 32; } return RISCV_EXCP_NONE; } static RISCVException write_stimecmp(CPURISCVState *env, int csrno, target_ulong val) { if (env->virt_enabled) { if (env->hvictl & HVICTL_VTI) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } return write_vstimecmp(env, csrno, val); } if (riscv_cpu_mxl(env) == MXL_RV32) { env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); } else { env->stimecmp = val; } riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); return RISCV_EXCP_NONE; } static RISCVException write_stimecmph(CPURISCVState *env, int csrno, target_ulong val) { if (env->virt_enabled) { if (env->hvictl & HVICTL_VTI) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } return write_vstimecmph(env, csrno, val); } env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); return RISCV_EXCP_NONE; } #define VSTOPI_NUM_SRCS 5 /* * All core local interrupts except the fixed ones 0:12. This macro is for * virtual interrupts logic so please don't change this to avoid messing up * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for * VS level`. */ #define LOCAL_INTERRUPTS (~0x1FFFULL) static const uint64_t delegable_ints = S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; static const uint64_t vs_delegable_ints = (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ (1ULL << (RISCV_EXCP_U_ECALL)) | \ (1ULL << (RISCV_EXCP_S_ECALL)) | \ (1ULL << (RISCV_EXCP_VS_ECALL)) | \ (1ULL << (RISCV_EXCP_M_ECALL)) | \ (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & ~((1ULL << (RISCV_EXCP_S_ECALL)) | (1ULL << (RISCV_EXCP_VS_ECALL)) | (1ULL << (RISCV_EXCP_M_ECALL)) | (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; /* * Spec allows for bits 13:63 to be either read-only or writable. * So far we have interrupt LCOFIP in that region which is writable. * * Also, spec allows to inject virtual interrupts in this region even * without any hardware interrupts for that interrupt number. * * For now interrupt in 13:63 region are all kept writable. 13 being * LCOFIP and 14:63 being virtual only. Change this in future if we * introduce more interrupts that are not writable. */ /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | LOCAL_INTERRUPTS; static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | LOCAL_INTERRUPTS; static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; static const uint64_t hip_writable_mask = MIP_VSSIP; static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP | LOCAL_INTERRUPTS; static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; const bool valid_vm_1_10_32[16] = { [VM_1_10_MBARE] = true, [VM_1_10_SV32] = true }; const bool valid_vm_1_10_64[16] = { [VM_1_10_MBARE] = true, [VM_1_10_SV39] = true, [VM_1_10_SV48] = true, [VM_1_10_SV57] = true }; /* Machine Information Registers */ static RISCVException read_zero(CPURISCVState *env, int csrno, target_ulong *val) { *val = 0; return RISCV_EXCP_NONE; } static RISCVException write_ignore(CPURISCVState *env, int csrno, target_ulong val) { return RISCV_EXCP_NONE; } static RISCVException read_mvendorid(CPURISCVState *env, int csrno, target_ulong *val) { *val = riscv_cpu_cfg(env)->mvendorid; return RISCV_EXCP_NONE; } static RISCVException read_marchid(CPURISCVState *env, int csrno, target_ulong *val) { *val = riscv_cpu_cfg(env)->marchid; return RISCV_EXCP_NONE; } static RISCVException read_mimpid(CPURISCVState *env, int csrno, target_ulong *val) { *val = riscv_cpu_cfg(env)->mimpid; return RISCV_EXCP_NONE; } static RISCVException read_mhartid(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mhartid; return RISCV_EXCP_NONE; } /* Machine Trap Setup */ /* We do not store SD explicitly, only compute it on demand. */ static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) { if ((status & MSTATUS_FS) == MSTATUS_FS || (status & MSTATUS_VS) == MSTATUS_VS || (status & MSTATUS_XS) == MSTATUS_XS) { switch (xl) { case MXL_RV32: return status | MSTATUS32_SD; case MXL_RV64: return status | MSTATUS64_SD; case MXL_RV128: return MSTATUSH128_SD; default: g_assert_not_reached(); } } return status; } static RISCVException read_mstatus(CPURISCVState *env, int csrno, target_ulong *val) { *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); return RISCV_EXCP_NONE; } static bool validate_vm(CPURISCVState *env, target_ulong vm) { uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; return get_field(mode_supported, (1 << vm)); } static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, target_ulong val) { target_ulong mask; bool vm; if (riscv_cpu_mxl(env) == MXL_RV32) { vm = validate_vm(env, get_field(val, SATP32_MODE)); mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); } else { vm = validate_vm(env, get_field(val, SATP64_MODE)); mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); } if (vm && mask) { /* * The ISA defines SATP.MODE=Bare as "no translation", but we still * pass these through QEMU's TLB emulation as it improves * performance. Flushing the TLB on SATP writes with paging * enabled avoids leaking those invalid cached mappings. */ tlb_flush(env_cpu(env)); return val; } return old_xatp; } static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, target_ulong val) { bool valid = false; target_ulong new_mpp = get_field(val, MSTATUS_MPP); switch (new_mpp) { case PRV_M: valid = true; break; case PRV_S: valid = riscv_has_ext(env, RVS); break; case PRV_U: valid = riscv_has_ext(env, RVU); break; } /* Remain field unchanged if new_mpp value is invalid */ if (!valid) { val = set_field(val, MSTATUS_MPP, old_mpp); } return val; } static RISCVException write_mstatus(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus = env->mstatus; uint64_t mask = 0; RISCVMXL xl = riscv_cpu_mxl(env); /* * MPP field have been made WARL since priv version 1.11. However, * legalization for it will not break any software running on 1.10. */ val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); /* flush tlb on mstatus fields that affect VM */ if ((val ^ mstatus) & MSTATUS_MXR) { tlb_flush(env_cpu(env)); } mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | MSTATUS_TW; if (riscv_has_ext(env, RVF)) { mask |= MSTATUS_FS; } if (riscv_has_ext(env, RVV)) { mask |= MSTATUS_VS; } if (xl != MXL_RV32 || env->debugger) { if (riscv_has_ext(env, RVH)) { mask |= MSTATUS_MPV | MSTATUS_GVA; } if ((val & MSTATUS64_UXL) != 0) { mask |= MSTATUS64_UXL; } } mstatus = (mstatus & ~mask) | (val & mask); env->mstatus = mstatus; /* * Except in debug mode, UXL/SXL can only be modified by higher * privilege mode. So xl will not be changed in normal mode. */ if (env->debugger) { env->xl = cpu_recompute_xl(env); } riscv_cpu_update_mask(env); return RISCV_EXCP_NONE; } static RISCVException read_mstatush(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mstatus >> 32; return RISCV_EXCP_NONE; } static RISCVException write_mstatush(CPURISCVState *env, int csrno, target_ulong val) { uint64_t valh = (uint64_t)val << 32; uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; env->mstatus = (env->mstatus & ~mask) | (valh & mask); return RISCV_EXCP_NONE; } static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, Int128 *val) { *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); return RISCV_EXCP_NONE; } static RISCVException read_misa_i128(CPURISCVState *env, int csrno, Int128 *val) { *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); return RISCV_EXCP_NONE; } static RISCVException read_misa(CPURISCVState *env, int csrno, target_ulong *val) { target_ulong misa; switch (env->misa_mxl) { case MXL_RV32: misa = (target_ulong)MXL_RV32 << 30; break; #ifdef TARGET_RISCV64 case MXL_RV64: misa = (target_ulong)MXL_RV64 << 62; break; #endif default: g_assert_not_reached(); } *val = misa | env->misa_ext; return RISCV_EXCP_NONE; } static RISCVException write_misa(CPURISCVState *env, int csrno, target_ulong val) { RISCVCPU *cpu = env_archcpu(env); uint32_t orig_misa_ext = env->misa_ext; Error *local_err = NULL; if (!riscv_cpu_cfg(env)->misa_w) { /* drop write to misa */ return RISCV_EXCP_NONE; } /* Mask extensions that are not supported by this hart */ val &= env->misa_ext_mask; /* * Suppress 'C' if next instruction is not aligned * TODO: this should check next_pc */ if ((val & RVC) && (GETPC() & ~3) != 0) { val &= ~RVC; } /* Disable RVG if any of its dependencies are disabled */ if (!(val & RVI && val & RVM && val & RVA && val & RVF && val & RVD)) { val &= ~RVG; } /* If nothing changed, do nothing. */ if (val == env->misa_ext) { return RISCV_EXCP_NONE; } env->misa_ext = val; riscv_cpu_validate_set_extensions(cpu, &local_err); if (local_err != NULL) { /* Rollback on validation error */ qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " "0x%x, keeping existing MISA ext 0x%x\n", env->misa_ext, orig_misa_ext); env->misa_ext = orig_misa_ext; return RISCV_EXCP_NONE; } if (!(env->misa_ext & RVF)) { env->mstatus &= ~MSTATUS_FS; } /* flush translation cache */ tb_flush(env_cpu(env)); env->xl = riscv_cpu_mxl(env); return RISCV_EXCP_NONE; } static RISCVException read_medeleg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->medeleg; return RISCV_EXCP_NONE; } static RISCVException write_medeleg(CPURISCVState *env, int csrno, target_ulong val) { env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); return RISCV_EXCP_NONE; } static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t mask = wr_mask & delegable_ints; if (ret_val) { *ret_val = env->mideleg; } env->mideleg = (env->mideleg & ~mask) | (new_val & mask); if (riscv_has_ext(env, RVH)) { env->mideleg |= HS_MODE_INTERRUPTS; } return RISCV_EXCP_NONE; } static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mideleg64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException rmw_mie64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t mask = wr_mask & all_ints; if (ret_val) { *ret_val = env->mie; } env->mie = (env->mie & ~mask) | (new_val & mask); if (!riscv_has_ext(env, RVH)) { env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); } return RISCV_EXCP_NONE; } static RISCVException rmw_mie(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_mieh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mie64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t mask = wr_mask & mvien_writable_mask; if (ret_val) { *ret_val = env->mvien; } env->mvien = (env->mvien & ~mask) | (new_val & mask); return RISCV_EXCP_NONE; } static RISCVException rmw_mvien(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mvien64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) { int irq; uint8_t iprio; irq = riscv_cpu_mirq_pending(env); if (irq <= 0 || irq > 63) { *val = 0; } else { iprio = env->miprio[irq]; if (!iprio) { if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { iprio = IPRIO_MMAXIPRIO; } } *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; *val |= iprio; } return RISCV_EXCP_NONE; } static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) { if (!env->virt_enabled) { return csrno; } switch (csrno) { case CSR_SISELECT: return CSR_VSISELECT; case CSR_SIREG: return CSR_VSIREG; case CSR_STOPEI: return CSR_VSTOPEI; default: return csrno; }; } static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, target_ulong new_val, target_ulong wr_mask) { target_ulong *iselect; /* Translate CSR number for VS-mode */ csrno = aia_xlate_vs_csrno(env, csrno); /* Find the iselect CSR based on CSR number */ switch (csrno) { case CSR_MISELECT: iselect = &env->miselect; break; case CSR_SISELECT: iselect = &env->siselect; break; case CSR_VSISELECT: iselect = &env->vsiselect; break; default: return RISCV_EXCP_ILLEGAL_INST; }; if (val) { *val = *iselect; } wr_mask &= ISELECT_MASK; if (wr_mask) { *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); } return RISCV_EXCP_NONE; } static int rmw_iprio(target_ulong xlen, target_ulong iselect, uint8_t *iprio, target_ulong *val, target_ulong new_val, target_ulong wr_mask, int ext_irq_no) { int i, firq, nirqs; target_ulong old_val; if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { return -EINVAL; } if (xlen != 32 && iselect & 0x1) { return -EINVAL; } nirqs = 4 * (xlen / 32); firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); old_val = 0; for (i = 0; i < nirqs; i++) { old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); } if (val) { *val = old_val; } if (wr_mask) { new_val = (old_val & ~wr_mask) | (new_val & wr_mask); for (i = 0; i < nirqs; i++) { /* * M-level and S-level external IRQ priority always read-only * zero. This means default priority order is always preferred * for M-level and S-level external IRQs. */ if ((firq + i) == ext_irq_no) { continue; } iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; } } return 0; } static RISCVException rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, target_ulong new_val, target_ulong wr_mask) { bool virt, isel_reserved; uint8_t *iprio; int ret = -EINVAL; target_ulong priv, isel, vgein; /* Translate CSR number for VS-mode */ csrno = aia_xlate_vs_csrno(env, csrno); /* Decode register details from CSR number */ virt = false; isel_reserved = false; switch (csrno) { case CSR_MIREG: iprio = env->miprio; isel = env->miselect; priv = PRV_M; break; case CSR_SIREG: if (env->priv == PRV_S && env->mvien & MIP_SEIP && env->siselect >= ISELECT_IMSIC_EIDELIVERY && env->siselect <= ISELECT_IMSIC_EIE63) { goto done; } iprio = env->siprio; isel = env->siselect; priv = PRV_S; break; case CSR_VSIREG: iprio = env->hviprio; isel = env->vsiselect; priv = PRV_S; virt = true; break; default: goto done; }; /* Find the selected guest interrupt file */ vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { /* Local interrupt priority registers not available for VS-mode */ if (!virt) { ret = rmw_iprio(riscv_cpu_mxl_bits(env), isel, iprio, val, new_val, wr_mask, (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); } } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { /* IMSIC registers only available when machine implements it. */ if (env->aia_ireg_rmw_fn[priv]) { /* Selected guest interrupt file should not be zero */ if (virt && (!vgein || env->geilen < vgein)) { goto done; } /* Call machine specific IMSIC register emulation */ ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], AIA_MAKE_IREG(isel, priv, virt, vgein, riscv_cpu_mxl_bits(env)), val, new_val, wr_mask); } } else { isel_reserved = true; } done: if (ret) { return (env->virt_enabled && virt && !isel_reserved) ? RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; } return RISCV_EXCP_NONE; } static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, target_ulong new_val, target_ulong wr_mask) { bool virt; int ret = -EINVAL; target_ulong priv, vgein; /* Translate CSR number for VS-mode */ csrno = aia_xlate_vs_csrno(env, csrno); /* Decode register details from CSR number */ virt = false; switch (csrno) { case CSR_MTOPEI: priv = PRV_M; break; case CSR_STOPEI: if (env->mvien & MIP_SEIP && env->priv == PRV_S) { goto done; } priv = PRV_S; break; case CSR_VSTOPEI: priv = PRV_S; virt = true; break; default: goto done; }; /* IMSIC CSRs only available when machine implements IMSIC. */ if (!env->aia_ireg_rmw_fn[priv]) { goto done; } /* Find the selected guest interrupt file */ vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; /* Selected guest interrupt file should be valid */ if (virt && (!vgein || env->geilen < vgein)) { goto done; } /* Call machine specific IMSIC register emulation for TOPEI */ ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, riscv_cpu_mxl_bits(env)), val, new_val, wr_mask); done: if (ret) { return (env->virt_enabled && virt) ? RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; } return RISCV_EXCP_NONE; } static RISCVException read_mtvec(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtvec; return RISCV_EXCP_NONE; } static RISCVException write_mtvec(CPURISCVState *env, int csrno, target_ulong val) { /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ if ((val & 3) < 2) { env->mtvec = val; } else { qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); } return RISCV_EXCP_NONE; } static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mcountinhibit; return RISCV_EXCP_NONE; } static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, target_ulong val) { int cidx; PMUCTRState *counter; RISCVCPU *cpu = env_archcpu(env); /* WARL register - disable unavailable counters; TM bit is always 0 */ env->mcountinhibit = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR); /* Check if any other counter is also monitoring cycles/instructions */ for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { if (!get_field(env->mcountinhibit, BIT(cidx))) { counter = &env->pmu_ctrs[cidx]; counter->started = true; } } return RISCV_EXCP_NONE; } static RISCVException read_mcounteren(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mcounteren; return RISCV_EXCP_NONE; } static RISCVException write_mcounteren(CPURISCVState *env, int csrno, target_ulong val) { RISCVCPU *cpu = env_archcpu(env); /* WARL register - disable unavailable counters */ env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | COUNTEREN_IR); return RISCV_EXCP_NONE; } /* Machine Trap Handling */ static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, Int128 *val) { *val = int128_make128(env->mscratch, env->mscratchh); return RISCV_EXCP_NONE; } static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, Int128 val) { env->mscratch = int128_getlo(val); env->mscratchh = int128_gethi(val); return RISCV_EXCP_NONE; } static RISCVException read_mscratch(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mscratch; return RISCV_EXCP_NONE; } static RISCVException write_mscratch(CPURISCVState *env, int csrno, target_ulong val) { env->mscratch = val; return RISCV_EXCP_NONE; } static RISCVException read_mepc(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mepc; return RISCV_EXCP_NONE; } static RISCVException write_mepc(CPURISCVState *env, int csrno, target_ulong val) { env->mepc = val; return RISCV_EXCP_NONE; } static RISCVException read_mcause(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mcause; return RISCV_EXCP_NONE; } static RISCVException write_mcause(CPURISCVState *env, int csrno, target_ulong val) { env->mcause = val; return RISCV_EXCP_NONE; } static RISCVException read_mtval(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtval; return RISCV_EXCP_NONE; } static RISCVException write_mtval(CPURISCVState *env, int csrno, target_ulong val) { env->mtval = val; return RISCV_EXCP_NONE; } /* Execution environment configuration setup */ static RISCVException read_menvcfg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->menvcfg; return RISCV_EXCP_NONE; } static RISCVException write_menvcfg(CPURISCVState *env, int csrno, target_ulong val) { const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; if (riscv_cpu_mxl(env) == MXL_RV64) { mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | (cfg->ext_sstc ? MENVCFG_STCE : 0) | (cfg->ext_svadu ? MENVCFG_ADUE : 0); } env->menvcfg = (env->menvcfg & ~mask) | (val & mask); return RISCV_EXCP_NONE; } static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->menvcfg >> 32; return RISCV_EXCP_NONE; } static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, target_ulong val) { const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | (cfg->ext_sstc ? MENVCFG_STCE : 0) | (cfg->ext_svadu ? MENVCFG_ADUE : 0); uint64_t valh = (uint64_t)val << 32; env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); return RISCV_EXCP_NONE; } static RISCVException read_senvcfg(CPURISCVState *env, int csrno, target_ulong *val) { RISCVException ret; ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); if (ret != RISCV_EXCP_NONE) { return ret; } *val = env->senvcfg; return RISCV_EXCP_NONE; } static RISCVException write_senvcfg(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; RISCVException ret; ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); if (ret != RISCV_EXCP_NONE) { return ret; } env->senvcfg = (env->senvcfg & ~mask) | (val & mask); return RISCV_EXCP_NONE; } static RISCVException read_henvcfg(CPURISCVState *env, int csrno, target_ulong *val) { RISCVException ret; ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); if (ret != RISCV_EXCP_NONE) { return ret; } /* * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 */ *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | env->menvcfg); return RISCV_EXCP_NONE; } static RISCVException write_henvcfg(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; RISCVException ret; ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); if (ret != RISCV_EXCP_NONE) { return ret; } if (riscv_cpu_mxl(env) == MXL_RV64) { mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); } env->henvcfg = (env->henvcfg & ~mask) | (val & mask); return RISCV_EXCP_NONE; } static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, target_ulong *val) { RISCVException ret; ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); if (ret != RISCV_EXCP_NONE) { return ret; } *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | env->menvcfg)) >> 32; return RISCV_EXCP_NONE; } static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); uint64_t valh = (uint64_t)val << 32; RISCVException ret; ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); if (ret != RISCV_EXCP_NONE) { return ret; } env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); return RISCV_EXCP_NONE; } static RISCVException read_mstateen(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mstateen[csrno - CSR_MSTATEEN0]; return RISCV_EXCP_NONE; } static RISCVException write_mstateen(CPURISCVState *env, int csrno, uint64_t wr_mask, target_ulong new_val) { uint64_t *reg; reg = &env->mstateen[csrno - CSR_MSTATEEN0]; *reg = (*reg & ~wr_mask) | (new_val & wr_mask); return RISCV_EXCP_NONE; } static RISCVException write_mstateen0(CPURISCVState *env, int csrno, target_ulong new_val) { uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; if (!riscv_has_ext(env, RVF)) { wr_mask |= SMSTATEEN0_FCSR; } return write_mstateen(env, csrno, wr_mask, new_val); } static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, target_ulong new_val) { return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); } static RISCVException read_mstateenh(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; return RISCV_EXCP_NONE; } static RISCVException write_mstateenh(CPURISCVState *env, int csrno, uint64_t wr_mask, target_ulong new_val) { uint64_t *reg, val; reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; val = (uint64_t)new_val << 32; val |= *reg & 0xFFFFFFFF; *reg = (*reg & ~wr_mask) | (val & wr_mask); return RISCV_EXCP_NONE; } static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, target_ulong new_val) { uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; return write_mstateenh(env, csrno, wr_mask, new_val); } static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, target_ulong new_val) { return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); } static RISCVException read_hstateen(CPURISCVState *env, int csrno, target_ulong *val) { int index = csrno - CSR_HSTATEEN0; *val = env->hstateen[index] & env->mstateen[index]; return RISCV_EXCP_NONE; } static RISCVException write_hstateen(CPURISCVState *env, int csrno, uint64_t mask, target_ulong new_val) { int index = csrno - CSR_HSTATEEN0; uint64_t *reg, wr_mask; reg = &env->hstateen[index]; wr_mask = env->mstateen[index] & mask; *reg = (*reg & ~wr_mask) | (new_val & wr_mask); return RISCV_EXCP_NONE; } static RISCVException write_hstateen0(CPURISCVState *env, int csrno, target_ulong new_val) { uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; if (!riscv_has_ext(env, RVF)) { wr_mask |= SMSTATEEN0_FCSR; } return write_hstateen(env, csrno, wr_mask, new_val); } static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, target_ulong new_val) { return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); } static RISCVException read_hstateenh(CPURISCVState *env, int csrno, target_ulong *val) { int index = csrno - CSR_HSTATEEN0H; *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); return RISCV_EXCP_NONE; } static RISCVException write_hstateenh(CPURISCVState *env, int csrno, uint64_t mask, target_ulong new_val) { int index = csrno - CSR_HSTATEEN0H; uint64_t *reg, wr_mask, val; reg = &env->hstateen[index]; val = (uint64_t)new_val << 32; val |= *reg & 0xFFFFFFFF; wr_mask = env->mstateen[index] & mask; *reg = (*reg & ~wr_mask) | (val & wr_mask); return RISCV_EXCP_NONE; } static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, target_ulong new_val) { uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; return write_hstateenh(env, csrno, wr_mask, new_val); } static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, target_ulong new_val) { return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); } static RISCVException read_sstateen(CPURISCVState *env, int csrno, target_ulong *val) { bool virt = env->virt_enabled; int index = csrno - CSR_SSTATEEN0; *val = env->sstateen[index] & env->mstateen[index]; if (virt) { *val &= env->hstateen[index]; } return RISCV_EXCP_NONE; } static RISCVException write_sstateen(CPURISCVState *env, int csrno, uint64_t mask, target_ulong new_val) { bool virt = env->virt_enabled; int index = csrno - CSR_SSTATEEN0; uint64_t wr_mask; uint64_t *reg; wr_mask = env->mstateen[index] & mask; if (virt) { wr_mask &= env->hstateen[index]; } reg = &env->sstateen[index]; *reg = (*reg & ~wr_mask) | (new_val & wr_mask); return RISCV_EXCP_NONE; } static RISCVException write_sstateen0(CPURISCVState *env, int csrno, target_ulong new_val) { uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; if (!riscv_has_ext(env, RVF)) { wr_mask |= SMSTATEEN0_FCSR; } return write_sstateen(env, csrno, wr_mask, new_val); } static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, target_ulong new_val) { return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); } static RISCVException rmw_mip64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t old_mip, mask = wr_mask & delegable_ints; uint32_t gin; if (mask & MIP_SEIP) { env->software_seip = new_val & MIP_SEIP; new_val |= env->external_seip * MIP_SEIP; } if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && get_field(env->menvcfg, MENVCFG_STCE)) { /* sstc extension forbids STIP & VSTIP to be writeable in mip */ mask = mask & ~(MIP_STIP | MIP_VSTIP); } if (mask) { old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); } else { old_mip = env->mip; } if (csrno != CSR_HVIP) { gin = get_field(env->hstatus, HSTATUS_VGEIN); old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; old_mip |= env->vstime_irq ? MIP_VSTIP : 0; } if (ret_val) { *ret_val = old_mip; } return RISCV_EXCP_NONE; } static RISCVException rmw_mip(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_miph(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mip64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } /* * The function is written for two use-cases: * 1- To access mvip csr as is for m-mode access. * 2- To access sip as a combination of mip and mvip for s-mode. * * Both report bits 1, 5, 9 and 13:63 but with the exception of * STIP being read-only zero in case of mvip when sstc extension * is present. * Also, sip needs to be read-only zero when both mideleg[i] and * mvien[i] are zero but mvip needs to be an alias of mip. */ static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { RISCVCPU *cpu = env_archcpu(env); target_ulong ret_mip = 0; RISCVException ret; uint64_t old_mvip; /* * mideleg[i] mvien[i] * 0 0 No delegation. mvip[i] is alias of mip[i]. * 0 1 mvip[i] becomes source of interrupt, mip bypassed. * 1 X mip[i] is source of interrupt and mvip[i] aliases * mip[i]. * * So alias condition would be for bits: * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | * (!sstc & MIP_STIP) * * Non-alias condition will be for bits: * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) * * alias_mask denotes the bits that come from mip nalias_mask denotes bits * that come from hvip. */ uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (env->mideleg | ~env->mvien)) | MIP_STIP; uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~env->mideleg & env->mvien); uint64_t wr_mask_mvip; uint64_t wr_mask_mip; /* * mideleg[i] mvien[i] * 0 0 sip[i] read-only zero. * 0 1 sip[i] alias of mvip[i]. * 1 X sip[i] alias of mip[i]. * * Both alias and non-alias mask remain same for sip except for bits * which are zero in both mideleg and mvien. */ if (csrno == CSR_SIP) { /* Remove bits that are zero in both mideleg and mvien. */ alias_mask &= (env->mideleg | env->mvien); nalias_mask &= (env->mideleg | env->mvien); } /* * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear * that our in mip returned value. */ if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && get_field(env->menvcfg, MENVCFG_STCE)) { alias_mask &= ~MIP_STIP; } wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; /* * For bits set in alias_mask, mvip needs to be alias of mip, so forward * this to rmw_mip. */ ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); if (ret != RISCV_EXCP_NONE) { return ret; } old_mvip = env->mvip; /* * Write to mvip. Update only non-alias bits. Alias bits were updated * in mip in rmw_mip above. */ if (wr_mask_mvip) { env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); /* * Given mvip is separate source from mip, we need to trigger interrupt * from here separately. Normally this happen from riscv_cpu_update_mip. */ riscv_cpu_interrupt(env); } if (ret_val) { ret_mip &= alias_mask; old_mvip &= nalias_mask; *ret_val = old_mvip | ret_mip; } return RISCV_EXCP_NONE; } static RISCVException rmw_mvip(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_mviph(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mvip64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } /* Supervisor Trap Setup */ static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, Int128 *val) { uint64_t mask = sstatus_v1_10_mask; uint64_t sstatus = env->mstatus & mask; if (env->xl != MXL_RV32 || env->debugger) { mask |= SSTATUS64_UXL; } *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); return RISCV_EXCP_NONE; } static RISCVException read_sstatus(CPURISCVState *env, int csrno, target_ulong *val) { target_ulong mask = (sstatus_v1_10_mask); if (env->xl != MXL_RV32 || env->debugger) { mask |= SSTATUS64_UXL; } /* TODO: Use SXL not MXL. */ *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); return RISCV_EXCP_NONE; } static RISCVException write_sstatus(CPURISCVState *env, int csrno, target_ulong val) { target_ulong mask = (sstatus_v1_10_mask); if (env->xl != MXL_RV32 || env->debugger) { if ((val & SSTATUS64_UXL) != 0) { mask |= SSTATUS64_UXL; } } target_ulong newval = (env->mstatus & ~mask) | (val & mask); return write_mstatus(env, CSR_MSTATUS, newval); } static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & env->hideleg; uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); uint64_t rval, rval_vs, vsbits; uint64_t wr_mask_vsie; uint64_t wr_mask_mie; RISCVException ret; /* Bring VS-level bits to correct position */ vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); new_val &= ~(VS_MODE_INTERRUPTS >> 1); new_val |= vsbits << 1; vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); wr_mask |= vsbits << 1; wr_mask_mie = wr_mask & alias_mask; wr_mask_vsie = wr_mask & nalias_mask; ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); rval_vs = env->vsie & nalias_mask; env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); if (ret_val) { rval &= alias_mask; vsbits = rval & VS_MODE_INTERRUPTS; rval &= ~VS_MODE_INTERRUPTS; *ret_val = rval | (vsbits >> 1) | rval_vs; } return ret; } static RISCVException rmw_vsie(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_vsie64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException rmw_sie64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~env->mideleg & env->mvien); uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; uint64_t sie_mask = wr_mask & nalias_mask; RISCVException ret; /* * mideleg[i] mvien[i] * 0 0 sie[i] read-only zero. * 0 1 sie[i] is a separate writable bit. * 1 X sie[i] alias of mie[i]. * * Both alias and non-alias mask remain same for sip except for bits * which are zero in both mideleg and mvien. */ if (env->virt_enabled) { if (env->hvictl & HVICTL_VTI) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); if (ret_val) { *ret_val &= alias_mask; } } else { ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); if (ret_val) { *ret_val &= alias_mask; *ret_val |= env->sie & nalias_mask; } env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); } return ret; } static RISCVException rmw_sie(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); if (ret == RISCV_EXCP_NONE && ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_sieh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_sie64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException read_stvec(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->stvec; return RISCV_EXCP_NONE; } static RISCVException write_stvec(CPURISCVState *env, int csrno, target_ulong val) { /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ if ((val & 3) < 2) { env->stvec = val; } else { qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); } return RISCV_EXCP_NONE; } static RISCVException read_scounteren(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->scounteren; return RISCV_EXCP_NONE; } static RISCVException write_scounteren(CPURISCVState *env, int csrno, target_ulong val) { env->scounteren = val; return RISCV_EXCP_NONE; } /* Supervisor Trap Handling */ static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, Int128 *val) { *val = int128_make128(env->sscratch, env->sscratchh); return RISCV_EXCP_NONE; } static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, Int128 val) { env->sscratch = int128_getlo(val); env->sscratchh = int128_gethi(val); return RISCV_EXCP_NONE; } static RISCVException read_sscratch(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->sscratch; return RISCV_EXCP_NONE; } static RISCVException write_sscratch(CPURISCVState *env, int csrno, target_ulong val) { env->sscratch = val; return RISCV_EXCP_NONE; } static RISCVException read_sepc(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->sepc; return RISCV_EXCP_NONE; } static RISCVException write_sepc(CPURISCVState *env, int csrno, target_ulong val) { env->sepc = val; return RISCV_EXCP_NONE; } static RISCVException read_scause(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->scause; return RISCV_EXCP_NONE; } static RISCVException write_scause(CPURISCVState *env, int csrno, target_ulong val) { env->scause = val; return RISCV_EXCP_NONE; } static RISCVException read_stval(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->stval; return RISCV_EXCP_NONE; } static RISCVException write_stval(CPURISCVState *env, int csrno, target_ulong val) { env->stval = val; return RISCV_EXCP_NONE; } static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask); static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { RISCVException ret; uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; uint64_t vsbits; /* Add virtualized bits into vsip mask. */ mask |= env->hvien & ~env->hideleg; /* Bring VS-level bits to correct position */ vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); new_val &= ~(VS_MODE_INTERRUPTS >> 1); new_val |= vsbits << 1; vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); wr_mask |= vsbits << 1; ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask & mask & vsip_writable_mask); if (ret_val) { rval &= mask; vsbits = rval & VS_MODE_INTERRUPTS; rval &= ~VS_MODE_INTERRUPTS; *ret_val = rval | (vsbits >> 1); } return ret; } static RISCVException rmw_vsip(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_vsip64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException rmw_sip64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { RISCVException ret; uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; if (env->virt_enabled) { if (env->hvictl & HVICTL_VTI) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); } else { ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); } if (ret_val) { *ret_val &= (env->mideleg | env->mvien) & (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); } return ret; } static RISCVException rmw_sip(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_siph(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_sip64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } /* Supervisor Protection and Translation */ static RISCVException read_satp(CPURISCVState *env, int csrno, target_ulong *val) { if (!riscv_cpu_cfg(env)->mmu) { *val = 0; return RISCV_EXCP_NONE; } *val = env->satp; return RISCV_EXCP_NONE; } static RISCVException write_satp(CPURISCVState *env, int csrno, target_ulong val) { if (!riscv_cpu_cfg(env)->mmu) { return RISCV_EXCP_NONE; } env->satp = legalize_xatp(env, env->satp, val); return RISCV_EXCP_NONE; } static RISCVException read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) { int irq, ret; target_ulong topei; uint64_t vseip, vsgein; uint32_t iid, iprio, hviid, hviprio, gein; uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; gein = get_field(env->hstatus, HSTATUS_VGEIN); hviid = get_field(env->hvictl, HVICTL_IID); hviprio = get_field(env->hvictl, HVICTL_IPRIO); if (gein) { vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; if (gein <= env->geilen && vseip) { siid[scount] = IRQ_S_EXT; siprio[scount] = IPRIO_MMAXIPRIO + 1; if (env->aia_ireg_rmw_fn[PRV_S]) { /* * Call machine specific IMSIC register emulation for * reading TOPEI. */ ret = env->aia_ireg_rmw_fn[PRV_S]( env->aia_ireg_rmw_fn_arg[PRV_S], AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, riscv_cpu_mxl_bits(env)), &topei, 0, 0); if (!ret && topei) { siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; } } scount++; } } else { if (hviid == IRQ_S_EXT && hviprio) { siid[scount] = IRQ_S_EXT; siprio[scount] = hviprio; scount++; } } if (env->hvictl & HVICTL_VTI) { if (hviid != IRQ_S_EXT) { siid[scount] = hviid; siprio[scount] = hviprio; scount++; } } else { irq = riscv_cpu_vsirq_pending(env); if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { siid[scount] = irq; siprio[scount] = env->hviprio[irq]; scount++; } } iid = 0; iprio = UINT_MAX; for (s = 0; s < scount; s++) { if (siprio[s] < iprio) { iid = siid[s]; iprio = siprio[s]; } } if (iid) { if (env->hvictl & HVICTL_IPRIOM) { if (iprio > IPRIO_MMAXIPRIO) { iprio = IPRIO_MMAXIPRIO; } if (!iprio) { if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { iprio = IPRIO_MMAXIPRIO; } } } else { iprio = 1; } } else { iprio = 0; } *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; *val |= iprio; return RISCV_EXCP_NONE; } static RISCVException read_stopi(CPURISCVState *env, int csrno, target_ulong *val) { int irq; uint8_t iprio; if (env->virt_enabled) { return read_vstopi(env, CSR_VSTOPI, val); } irq = riscv_cpu_sirq_pending(env); if (irq <= 0 || irq > 63) { *val = 0; } else { iprio = env->siprio[irq]; if (!iprio) { if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { iprio = IPRIO_MMAXIPRIO; } } *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; *val |= iprio; } return RISCV_EXCP_NONE; } /* Hypervisor Extensions */ static RISCVException read_hstatus(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hstatus; if (riscv_cpu_mxl(env) != MXL_RV32) { /* We only support 64-bit VSXL */ *val = set_field(*val, HSTATUS_VSXL, 2); } /* We only support little endian */ *val = set_field(*val, HSTATUS_VSBE, 0); return RISCV_EXCP_NONE; } static RISCVException write_hstatus(CPURISCVState *env, int csrno, target_ulong val) { env->hstatus = val; if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); } if (get_field(val, HSTATUS_VSBE) != 0) { qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); } return RISCV_EXCP_NONE; } static RISCVException read_hedeleg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hedeleg; return RISCV_EXCP_NONE; } static RISCVException write_hedeleg(CPURISCVState *env, int csrno, target_ulong val) { env->hedeleg = val & vs_delegable_excps; return RISCV_EXCP_NONE; } static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t mask = wr_mask & hvien_writable_mask; if (ret_val) { *ret_val = env->hvien; } env->hvien = (env->hvien & ~mask) | (new_val & mask); return RISCV_EXCP_NONE; } static RISCVException rmw_hvien(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_hvien64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { uint64_t mask = wr_mask & vs_delegable_ints; if (ret_val) { *ret_val = env->hideleg & vs_delegable_ints; } env->hideleg = (env->hideleg & ~mask) | (new_val & mask); return RISCV_EXCP_NONE; } static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_hideleg64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } /* * The function is written for two use-cases: * 1- To access hvip csr as is for HS-mode access. * 2- To access vsip as a combination of hvip, and mip for vs-mode. * * Both report bits 2, 6, 10 and 13:63. * vsip needs to be read-only zero when both hideleg[i] and * hvien[i] are zero. */ static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, uint64_t *ret_val, uint64_t new_val, uint64_t wr_mask) { RISCVException ret; uint64_t old_hvip; uint64_t ret_mip; /* * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These * bits are actually being maintained in mip so we read them from there. * This way we have a single source of truth and allows for easier * implementation. * * For bits 13:63 we have: * * hideleg[i] hvien[i] * 0 0 No delegation. vsip[i] readonly zero. * 0 1 vsip[i] is alias of hvip[i], sip bypassed. * 1 X vsip[i] is alias of sip[i], hvip bypassed. * * alias_mask denotes the bits that come from sip (mip here given we * maintain all bits there). nalias_mask denotes bits that come from * hvip. */ uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; uint64_t nalias_mask = (~env->hideleg & env->hvien); uint64_t wr_mask_hvip; uint64_t wr_mask_mip; /* * Both alias and non-alias mask remain same for vsip except: * 1- For VS* bits if they are zero in hideleg. * 2- For 13:63 bits if they are zero in both hideleg and hvien. */ if (csrno == CSR_VSIP) { /* zero-out VS* bits that are not delegated to VS mode. */ alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); /* * zero-out 13:63 bits that are zero in both hideleg and hvien. * nalias_mask mask can not contain any VS* bits so only second * condition applies on it. */ nalias_mask &= (env->hideleg | env->hvien); alias_mask &= (env->hideleg | env->hvien); } wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; /* Aliased bits, bits 10, 6, 2 need to come from mip. */ ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); if (ret != RISCV_EXCP_NONE) { return ret; } old_hvip = env->hvip; if (wr_mask_hvip) { env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); /* * Given hvip is separate source from mip, we need to trigger interrupt * from here separately. Normally this happen from riscv_cpu_update_mip. */ riscv_cpu_interrupt(env); } if (ret_val) { /* Only take VS* bits from mip. */ ret_mip &= alias_mask; /* Take in non-delegated 13:63 bits from hvip. */ old_hvip &= nalias_mask; *ret_val = ret_mip | old_hvip; } return ret; } static RISCVException rmw_hvip(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); if (ret_val) { *ret_val = rval; } return ret; } static RISCVException rmw_hviph(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_hvip64(env, csrno, &rval, ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); if (ret_val) { *ret_val = rval >> 32; } return ret; } static RISCVException rmw_hip(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { int ret = rmw_mip(env, csrno, ret_value, new_value, write_mask & hip_writable_mask); if (ret_value) { *ret_value &= HS_MODE_INTERRUPTS; } return ret; } static RISCVException rmw_hie(CPURISCVState *env, int csrno, target_ulong *ret_val, target_ulong new_val, target_ulong wr_mask) { uint64_t rval; RISCVException ret; ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); if (ret_val) { *ret_val = rval & HS_MODE_INTERRUPTS; } return ret; } static RISCVException read_hcounteren(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hcounteren; return RISCV_EXCP_NONE; } static RISCVException write_hcounteren(CPURISCVState *env, int csrno, target_ulong val) { env->hcounteren = val; return RISCV_EXCP_NONE; } static RISCVException read_hgeie(CPURISCVState *env, int csrno, target_ulong *val) { if (val) { *val = env->hgeie; } return RISCV_EXCP_NONE; } static RISCVException write_hgeie(CPURISCVState *env, int csrno, target_ulong val) { /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ val &= ((((target_ulong)1) << env->geilen) - 1) << 1; env->hgeie = val; /* Update mip.SGEIP bit */ riscv_cpu_update_mip(env, MIP_SGEIP, BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); return RISCV_EXCP_NONE; } static RISCVException read_htval(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->htval; return RISCV_EXCP_NONE; } static RISCVException write_htval(CPURISCVState *env, int csrno, target_ulong val) { env->htval = val; return RISCV_EXCP_NONE; } static RISCVException read_htinst(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->htinst; return RISCV_EXCP_NONE; } static RISCVException write_htinst(CPURISCVState *env, int csrno, target_ulong val) { return RISCV_EXCP_NONE; } static RISCVException read_hgeip(CPURISCVState *env, int csrno, target_ulong *val) { if (val) { *val = env->hgeip; } return RISCV_EXCP_NONE; } static RISCVException read_hgatp(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hgatp; return RISCV_EXCP_NONE; } static RISCVException write_hgatp(CPURISCVState *env, int csrno, target_ulong val) { env->hgatp = legalize_xatp(env, env->hgatp, val); return RISCV_EXCP_NONE; } static RISCVException read_htimedelta(CPURISCVState *env, int csrno, target_ulong *val) { if (!env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } *val = env->htimedelta; return RISCV_EXCP_NONE; } static RISCVException write_htimedelta(CPURISCVState *env, int csrno, target_ulong val) { if (!env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } if (riscv_cpu_mxl(env) == MXL_RV32) { env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); } else { env->htimedelta = val; } if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, env->htimedelta, MIP_VSTIP); } return RISCV_EXCP_NONE; } static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, target_ulong *val) { if (!env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } *val = env->htimedelta >> 32; return RISCV_EXCP_NONE; } static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, target_ulong val) { if (!env->rdtime_fn) { return RISCV_EXCP_ILLEGAL_INST; } env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, env->htimedelta, MIP_VSTIP); } return RISCV_EXCP_NONE; } static RISCVException read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hvictl; return RISCV_EXCP_NONE; } static RISCVException write_hvictl(CPURISCVState *env, int csrno, target_ulong val) { env->hvictl = val & HVICTL_VALID_MASK; return RISCV_EXCP_NONE; } static RISCVException read_hvipriox(CPURISCVState *env, int first_index, uint8_t *iprio, target_ulong *val) { int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); /* First index has to be a multiple of number of irqs per register */ if (first_index % num_irqs) { return (env->virt_enabled) ? RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; } /* Fill-up return value */ *val = 0; for (i = 0; i < num_irqs; i++) { if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { continue; } if (rdzero) { continue; } *val |= ((target_ulong)iprio[irq]) << (i * 8); } return RISCV_EXCP_NONE; } static RISCVException write_hvipriox(CPURISCVState *env, int first_index, uint8_t *iprio, target_ulong val) { int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); /* First index has to be a multiple of number of irqs per register */ if (first_index % num_irqs) { return (env->virt_enabled) ? RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; } /* Fill-up priority array */ for (i = 0; i < num_irqs; i++) { if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { continue; } if (rdzero) { iprio[irq] = 0; } else { iprio[irq] = (val >> (i * 8)) & 0xff; } } return RISCV_EXCP_NONE; } static RISCVException read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) { return read_hvipriox(env, 0, env->hviprio, val); } static RISCVException write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) { return write_hvipriox(env, 0, env->hviprio, val); } static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) { return read_hvipriox(env, 4, env->hviprio, val); } static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) { return write_hvipriox(env, 4, env->hviprio, val); } static RISCVException read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) { return read_hvipriox(env, 8, env->hviprio, val); } static RISCVException write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) { return write_hvipriox(env, 8, env->hviprio, val); } static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) { return read_hvipriox(env, 12, env->hviprio, val); } static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) { return write_hvipriox(env, 12, env->hviprio, val); } /* Virtual CSR Registers */ static RISCVException read_vsstatus(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsstatus; return RISCV_EXCP_NONE; } static RISCVException write_vsstatus(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mask = (target_ulong)-1; if ((val & VSSTATUS64_UXL) == 0) { mask &= ~VSSTATUS64_UXL; } env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; return RISCV_EXCP_NONE; } static RISCVException read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstvec; return RISCV_EXCP_NONE; } static RISCVException write_vstvec(CPURISCVState *env, int csrno, target_ulong val) { env->vstvec = val; return RISCV_EXCP_NONE; } static RISCVException read_vsscratch(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsscratch; return RISCV_EXCP_NONE; } static RISCVException write_vsscratch(CPURISCVState *env, int csrno, target_ulong val) { env->vsscratch = val; return RISCV_EXCP_NONE; } static RISCVException read_vsepc(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsepc; return RISCV_EXCP_NONE; } static RISCVException write_vsepc(CPURISCVState *env, int csrno, target_ulong val) { env->vsepc = val; return RISCV_EXCP_NONE; } static RISCVException read_vscause(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vscause; return RISCV_EXCP_NONE; } static RISCVException write_vscause(CPURISCVState *env, int csrno, target_ulong val) { env->vscause = val; return RISCV_EXCP_NONE; } static RISCVException read_vstval(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstval; return RISCV_EXCP_NONE; } static RISCVException write_vstval(CPURISCVState *env, int csrno, target_ulong val) { env->vstval = val; return RISCV_EXCP_NONE; } static RISCVException read_vsatp(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsatp; return RISCV_EXCP_NONE; } static RISCVException write_vsatp(CPURISCVState *env, int csrno, target_ulong val) { env->vsatp = legalize_xatp(env, env->vsatp, val); return RISCV_EXCP_NONE; } static RISCVException read_mtval2(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtval2; return RISCV_EXCP_NONE; } static RISCVException write_mtval2(CPURISCVState *env, int csrno, target_ulong val) { env->mtval2 = val; return RISCV_EXCP_NONE; } static RISCVException read_mtinst(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtinst; return RISCV_EXCP_NONE; } static RISCVException write_mtinst(CPURISCVState *env, int csrno, target_ulong val) { env->mtinst = val; return RISCV_EXCP_NONE; } /* Physical Memory Protection */ static RISCVException read_mseccfg(CPURISCVState *env, int csrno, target_ulong *val) { *val = mseccfg_csr_read(env); return RISCV_EXCP_NONE; } static RISCVException write_mseccfg(CPURISCVState *env, int csrno, target_ulong val) { mseccfg_csr_write(env, val); return RISCV_EXCP_NONE; } static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, target_ulong *val) { uint32_t reg_index = csrno - CSR_PMPCFG0; *val = pmpcfg_csr_read(env, reg_index); return RISCV_EXCP_NONE; } static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, target_ulong val) { uint32_t reg_index = csrno - CSR_PMPCFG0; pmpcfg_csr_write(env, reg_index, val); return RISCV_EXCP_NONE; } static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, target_ulong *val) { *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); return RISCV_EXCP_NONE; } static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, target_ulong val) { pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); return RISCV_EXCP_NONE; } static RISCVException read_tselect(CPURISCVState *env, int csrno, target_ulong *val) { *val = tselect_csr_read(env); return RISCV_EXCP_NONE; } static RISCVException write_tselect(CPURISCVState *env, int csrno, target_ulong val) { tselect_csr_write(env, val); return RISCV_EXCP_NONE; } static RISCVException read_tdata(CPURISCVState *env, int csrno, target_ulong *val) { /* return 0 in tdata1 to end the trigger enumeration */ if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { *val = 0; return RISCV_EXCP_NONE; } if (!tdata_available(env, csrno - CSR_TDATA1)) { return RISCV_EXCP_ILLEGAL_INST; } *val = tdata_csr_read(env, csrno - CSR_TDATA1); return RISCV_EXCP_NONE; } static RISCVException write_tdata(CPURISCVState *env, int csrno, target_ulong val) { if (!tdata_available(env, csrno - CSR_TDATA1)) { return RISCV_EXCP_ILLEGAL_INST; } tdata_csr_write(env, csrno - CSR_TDATA1, val); return RISCV_EXCP_NONE; } static RISCVException read_tinfo(CPURISCVState *env, int csrno, target_ulong *val) { *val = tinfo_csr_read(env); return RISCV_EXCP_NONE; } static RISCVException read_mcontext(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mcontext; return RISCV_EXCP_NONE; } static RISCVException write_mcontext(CPURISCVState *env, int csrno, target_ulong val) { bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; int32_t mask; if (riscv_has_ext(env, RVH)) { /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; } else { /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ mask = rv32 ? MCONTEXT32 : MCONTEXT64; } env->mcontext = val & mask; return RISCV_EXCP_NONE; } /* * Functions to access Pointer Masking feature registers * We have to check if current priv lvl could modify * csr in given mode */ static bool check_pm_current_disabled(CPURISCVState *env, int csrno) { int csr_priv = get_field(csrno, 0x300); int pm_current; if (env->debugger) { return false; } /* * If priv lvls differ that means we're accessing csr from higher priv lvl, * so allow the access */ if (env->priv != csr_priv) { return false; } switch (env->priv) { case PRV_M: pm_current = get_field(env->mmte, M_PM_CURRENT); break; case PRV_S: pm_current = get_field(env->mmte, S_PM_CURRENT); break; case PRV_U: pm_current = get_field(env->mmte, U_PM_CURRENT); break; default: g_assert_not_reached(); } /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ return !pm_current; } static RISCVException read_mmte(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mmte & MMTE_MASK; return RISCV_EXCP_NONE; } static RISCVException write_mmte(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; target_ulong wpri_val = val & MMTE_MASK; if (val != wpri_val) { qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", val, "vs expected 0x", wpri_val); } /* for machine mode pm.current is hardwired to 1 */ wpri_val |= MMTE_M_PM_CURRENT; /* hardwiring pm.instruction bit to 0, since it's not supported yet */ wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); env->mmte = wpri_val | EXT_STATUS_DIRTY; riscv_cpu_update_mask(env); /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } static RISCVException read_smte(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mmte & SMTE_MASK; return RISCV_EXCP_NONE; } static RISCVException write_smte(CPURISCVState *env, int csrno, target_ulong val) { target_ulong wpri_val = val & SMTE_MASK; if (val != wpri_val) { qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", val, "vs expected 0x", wpri_val); } /* if pm.current==0 we can't modify current PM CSRs */ if (check_pm_current_disabled(env, csrno)) { return RISCV_EXCP_NONE; } wpri_val |= (env->mmte & ~SMTE_MASK); write_mmte(env, csrno, wpri_val); return RISCV_EXCP_NONE; } static RISCVException read_umte(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mmte & UMTE_MASK; return RISCV_EXCP_NONE; } static RISCVException write_umte(CPURISCVState *env, int csrno, target_ulong val) { target_ulong wpri_val = val & UMTE_MASK; if (val != wpri_val) { qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", val, "vs expected 0x", wpri_val); } if (check_pm_current_disabled(env, csrno)) { return RISCV_EXCP_NONE; } wpri_val |= (env->mmte & ~UMTE_MASK); write_mmte(env, csrno, wpri_val); return RISCV_EXCP_NONE; } static RISCVException read_mpmmask(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mpmmask; return RISCV_EXCP_NONE; } static RISCVException write_mpmmask(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; env->mpmmask = val; if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { env->cur_pmmask = val; } env->mmte |= EXT_STATUS_DIRTY; /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } static RISCVException read_spmmask(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->spmmask; return RISCV_EXCP_NONE; } static RISCVException write_spmmask(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; /* if pm.current==0 we can't modify current PM CSRs */ if (check_pm_current_disabled(env, csrno)) { return RISCV_EXCP_NONE; } env->spmmask = val; if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { env->cur_pmmask = val; if (cpu_get_xl(env, PRV_S) == MXL_RV32) { env->cur_pmmask &= UINT32_MAX; } } env->mmte |= EXT_STATUS_DIRTY; /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } static RISCVException read_upmmask(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->upmmask; return RISCV_EXCP_NONE; } static RISCVException write_upmmask(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; /* if pm.current==0 we can't modify current PM CSRs */ if (check_pm_current_disabled(env, csrno)) { return RISCV_EXCP_NONE; } env->upmmask = val; if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { env->cur_pmmask = val; if (cpu_get_xl(env, PRV_U) == MXL_RV32) { env->cur_pmmask &= UINT32_MAX; } } env->mmte |= EXT_STATUS_DIRTY; /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } static RISCVException read_mpmbase(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mpmbase; return RISCV_EXCP_NONE; } static RISCVException write_mpmbase(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; env->mpmbase = val; if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { env->cur_pmbase = val; } env->mmte |= EXT_STATUS_DIRTY; /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } static RISCVException read_spmbase(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->spmbase; return RISCV_EXCP_NONE; } static RISCVException write_spmbase(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; /* if pm.current==0 we can't modify current PM CSRs */ if (check_pm_current_disabled(env, csrno)) { return RISCV_EXCP_NONE; } env->spmbase = val; if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { env->cur_pmbase = val; if (cpu_get_xl(env, PRV_S) == MXL_RV32) { env->cur_pmbase &= UINT32_MAX; } } env->mmte |= EXT_STATUS_DIRTY; /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } static RISCVException read_upmbase(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->upmbase; return RISCV_EXCP_NONE; } static RISCVException write_upmbase(CPURISCVState *env, int csrno, target_ulong val) { uint64_t mstatus; /* if pm.current==0 we can't modify current PM CSRs */ if (check_pm_current_disabled(env, csrno)) { return RISCV_EXCP_NONE; } env->upmbase = val; if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { env->cur_pmbase = val; if (cpu_get_xl(env, PRV_U) == MXL_RV32) { env->cur_pmbase &= UINT32_MAX; } } env->mmte |= EXT_STATUS_DIRTY; /* Set XS and SD bits, since PM CSRs are dirty */ mstatus = env->mstatus | MSTATUS_XS; write_mstatus(env, csrno, mstatus); return RISCV_EXCP_NONE; } #endif /* Crypto Extension */ target_ulong riscv_new_csr_seed(target_ulong new_value, target_ulong write_mask) { uint16_t random_v; Error *random_e = NULL; int random_r; target_ulong rval; random_r = qemu_guest_getrandom(&random_v, 2, &random_e); if (unlikely(random_r < 0)) { /* * Failed, for unknown reasons in the crypto subsystem. * The best we can do is log the reason and return a * failure indication to the guest. There is no reason * we know to expect the failure to be transitory, so * indicate DEAD to avoid having the guest spin on WAIT. */ qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", __func__, error_get_pretty(random_e)); error_free(random_e); rval = SEED_OPST_DEAD; } else { rval = random_v | SEED_OPST_ES16; } return rval; } static RISCVException rmw_seed(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { target_ulong rval; rval = riscv_new_csr_seed(new_value, write_mask); if (ret_value) { *ret_value = rval; } return RISCV_EXCP_NONE; } /* * riscv_csrrw - read and/or update control and status register * * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); */ static inline RISCVException riscv_csrrw_check(CPURISCVState *env, int csrno, bool write_mask) { /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ bool read_only = get_field(csrno, 0xC00) == 3; int csr_min_priv = csr_ops[csrno].min_priv_ver; /* ensure the CSR extension is enabled */ if (!riscv_cpu_cfg(env)->ext_zicsr) { return RISCV_EXCP_ILLEGAL_INST; } /* ensure CSR is implemented by checking predicate */ if (!csr_ops[csrno].predicate) { return RISCV_EXCP_ILLEGAL_INST; } /* privileged spec version check */ if (env->priv_ver < csr_min_priv) { return RISCV_EXCP_ILLEGAL_INST; } /* read / write check */ if (write_mask && read_only) { return RISCV_EXCP_ILLEGAL_INST; } /* * The predicate() not only does existence check but also does some * access control check which triggers for example virtual instruction * exception in some cases. When writing read-only CSRs in those cases * illegal instruction exception should be triggered instead of virtual * instruction exception. Hence this comes after the read / write check. */ RISCVException ret = csr_ops[csrno].predicate(env, csrno); if (ret != RISCV_EXCP_NONE) { return ret; } #if !defined(CONFIG_USER_ONLY) int csr_priv, effective_priv = env->priv; if (riscv_has_ext(env, RVH) && env->priv == PRV_S && !env->virt_enabled) { /* * We are in HS mode. Add 1 to the effective privilege level to * allow us to access the Hypervisor CSRs. */ effective_priv++; } csr_priv = get_field(csrno, 0x300); if (!env->debugger && (effective_priv < csr_priv)) { if (csr_priv == (PRV_S + 1) && env->virt_enabled) { return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; } return RISCV_EXCP_ILLEGAL_INST; } #endif return RISCV_EXCP_NONE; } static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { RISCVException ret; target_ulong old_value = 0; /* execute combined read/write operation if it exists */ if (csr_ops[csrno].op) { return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); } /* * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() * and we can't throw side effects caused by CSR reads. */ if (ret_value) { /* if no accessor exists then return failure */ if (!csr_ops[csrno].read) { return RISCV_EXCP_ILLEGAL_INST; } /* read old value */ ret = csr_ops[csrno].read(env, csrno, &old_value); if (ret != RISCV_EXCP_NONE) { return ret; } } /* write value if writable and write mask set, otherwise drop writes */ if (write_mask) { new_value = (old_value & ~write_mask) | (new_value & write_mask); if (csr_ops[csrno].write) { ret = csr_ops[csrno].write(env, csrno, new_value); if (ret != RISCV_EXCP_NONE) { return ret; } } } /* return old value */ if (ret_value) { *ret_value = old_value; } return RISCV_EXCP_NONE; } RISCVException riscv_csrrw(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); if (ret != RISCV_EXCP_NONE) { return ret; } return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); } static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, Int128 *ret_value, Int128 new_value, Int128 write_mask) { RISCVException ret; Int128 old_value; /* read old value */ ret = csr_ops[csrno].read128(env, csrno, &old_value); if (ret != RISCV_EXCP_NONE) { return ret; } /* write value if writable and write mask set, otherwise drop writes */ if (int128_nz(write_mask)) { new_value = int128_or(int128_and(old_value, int128_not(write_mask)), int128_and(new_value, write_mask)); if (csr_ops[csrno].write128) { ret = csr_ops[csrno].write128(env, csrno, new_value); if (ret != RISCV_EXCP_NONE) { return ret; } } else if (csr_ops[csrno].write) { /* avoids having to write wrappers for all registers */ ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); if (ret != RISCV_EXCP_NONE) { return ret; } } } /* return old value */ if (ret_value) { *ret_value = old_value; } return RISCV_EXCP_NONE; } RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, Int128 *ret_value, Int128 new_value, Int128 write_mask) { RISCVException ret; ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); if (ret != RISCV_EXCP_NONE) { return ret; } if (csr_ops[csrno].read128) { return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); } /* * Fall back to 64-bit version for now, if the 128-bit alternative isn't * at all defined. * Note, some CSRs don't need to extend to MXLEN (64 upper bits non * significant), for those, this fallback is correctly handling the * accesses */ target_ulong old_value; ret = riscv_csrrw_do64(env, csrno, &old_value, int128_getlo(new_value), int128_getlo(write_mask)); if (ret == RISCV_EXCP_NONE && ret_value) { *ret_value = int128_make64(old_value); } return ret; } /* * Debugger support. If not in user mode, set env->debugger before the * riscv_csrrw call and clear it after the call. */ RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { RISCVException ret; #if !defined(CONFIG_USER_ONLY) env->debugger = true; #endif ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); #if !defined(CONFIG_USER_ONLY) env->debugger = false; #endif return ret; } static RISCVException read_jvt(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->jvt; return RISCV_EXCP_NONE; } static RISCVException write_jvt(CPURISCVState *env, int csrno, target_ulong val) { env->jvt = val; return RISCV_EXCP_NONE; } /* * Control and Status Register function table * riscv_csr_operations::predicate() must be provided for an implemented CSR */ riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { /* User Floating-Point CSRs */ [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, [CSR_FRM] = { "frm", fs, read_frm, write_frm }, [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, /* Vector CSRs */ [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, [CSR_VL] = { "vl", vs, read_vl }, [CSR_VTYPE] = { "vtype", vs, read_vtype }, [CSR_VLENB] = { "vlenb", vs, read_vlenb }, /* User Timers and Counters */ [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, /* * In privileged mode, the monitor will have to emulate TIME CSRs only if * rdtime callback is not provided by machine/platform emulation. */ [CSR_TIME] = { "time", ctr, read_time }, [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, /* Crypto Extension */ [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, /* Zcmt Extension */ [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, #if !defined(CONFIG_USER_ONLY) /* Machine Timers and Counters */ [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, write_mhpmcounter }, [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, write_mhpmcounter }, [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, write_mhpmcounterh }, /* Machine Information Registers */ [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, [CSR_MARCHID] = { "marchid", any, read_marchid }, [CSR_MIMPID] = { "mimpid", any, read_mimpid }, [CSR_MHARTID] = { "mhartid", any, read_mhartid }, [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, .min_priv_ver = PRIV_VERSION_1_12_0 }, /* Machine Trap Setup */ [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, read_mstatus_i128 }, [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, read_misa_i128 }, [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, write_mcounteren }, [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, /* Machine Trap Handling */ [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, read_mscratch_i128, write_mscratch_i128 }, [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, /* Machine-Level Interrupts (AIA) */ [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, /* Virtual Interrupts for Supervisor Level (AIA) */ [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, /* Machine-Level High-Half CSRs (AIA) */ [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, /* Execution environment configuration */ [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, .min_priv_ver = PRIV_VERSION_1_12_0 }, /* Smstateen extension CSRs */ [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, write_mstateen0h, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, write_mstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, write_mstateenh_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, write_mstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, write_mstateenh_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, write_mstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, write_mstateenh_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, write_hstateen0h, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, write_hstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, write_hstateenh_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, write_hstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, write_hstateenh_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, write_hstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, write_hstateenh_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, write_sstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, write_sstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, write_sstateen_1_3, .min_priv_ver = PRIV_VERSION_1_12_0 }, /* Supervisor Trap Setup */ [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, read_sstatus_i128 }, [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, /* Supervisor Trap Handling */ [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, read_sscratch_i128, write_sscratch_i128 }, [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, write_vstimecmp, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, write_vstimecmph, .min_priv_ver = PRIV_VERSION_1_12_0 }, /* Supervisor Protection and Translation */ [CSR_SATP] = { "satp", satp, read_satp, write_satp }, /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, /* Supervisor-Level Interrupts (AIA) */ [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, /* Supervisor-Level High-Half CSRs (AIA) */ [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, .min_priv_ver = PRIV_VERSION_1_12_0 }, /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, write_hvictl }, [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, write_hviprio1 }, [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, write_hviprio2 }, /* * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) */ [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, rmw_xiselect }, [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, /* VS-Level Interrupts (H-extension with AIA) */ [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, rmw_hidelegh }, [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, write_hviprio1h }, [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, write_hviprio2h }, [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, /* Physical Memory Protection */ [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, .min_priv_ver = PRIV_VERSION_1_11_0 }, [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, /* Debug CSRs */ [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, /* User Pointer Masking */ [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, /* Machine Pointer Masking */ [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, /* Supervisor Pointer Masking */ [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, /* Performance Counters */ [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, write_mhpmcounter }, [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, write_mcountinhibit, .min_priv_ver = PRIV_VERSION_1_11_0 }, [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, write_mhpmevent }, [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, write_mhpmeventh, .min_priv_ver = PRIV_VERSION_1_12_0 }, [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, write_mhpmcounterh }, [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, .min_priv_ver = PRIV_VERSION_1_12_0 }, #endif /* !CONFIG_USER_ONLY */ };