/* * qemu user cpu loop * * Copyright (c) 2003-2008 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "cpu_loop-common.h" static void gen_sigill_reg(CPUTLGState *env) { target_siginfo_t info; info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_PRVREG; info._sifields._sigfault._addr = env->pc; queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); } static void do_signal(CPUTLGState *env, int signo, int sigcode) { target_siginfo_t info; info.si_signo = signo; info.si_errno = 0; info._sifields._sigfault._addr = env->pc; if (signo == TARGET_SIGSEGV) { /* The passed in sigcode is a dummy; check for a page mapping and pass either MAPERR or ACCERR. */ target_ulong addr = env->excaddr; info._sifields._sigfault._addr = addr; if (page_check_range(addr, 1, PAGE_VALID) < 0) { sigcode = TARGET_SEGV_MAPERR; } else { sigcode = TARGET_SEGV_ACCERR; } } info.si_code = sigcode; queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); } static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) { env->excaddr = addr; do_signal(env, TARGET_SIGSEGV, 0); } static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) { if (unlikely(reg >= TILEGX_R_COUNT)) { switch (reg) { case TILEGX_R_SN: case TILEGX_R_ZERO: return; case TILEGX_R_IDN0: case TILEGX_R_IDN1: case TILEGX_R_UDN0: case TILEGX_R_UDN1: case TILEGX_R_UDN2: case TILEGX_R_UDN3: gen_sigill_reg(env); return; default: g_assert_not_reached(); } } env->regs[reg] = val; } /* * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in * memory at the address held in the first source register. If the values are * not equal, then no memory operation is performed. If the values are equal, * the 8-byte quantity from the second source register is written into memory * at the address held in the first source register. In either case, the result * of the instruction is the value read from memory. The compare and write to * memory are atomic and thus can be used for synchronization purposes. This * instruction only operates for addresses aligned to a 8-byte boundary. * Unaligned memory access causes an Unaligned Data Reference interrupt. * * Functional Description (64-bit) * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); * rf[Dest] = memVal; * if (memVal == SPR[CmpValueSPR]) * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); * * Functional Description (32-bit) * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); * rf[Dest] = memVal; * if (memVal == signExtend32 (SPR[CmpValueSPR])) * memoryWriteWord (rf[SrcA], rf[SrcB]); * * * This function also processes exch and exch4 which need not process SPR. */ static void do_exch(CPUTLGState *env, bool quad, bool cmp) { target_ulong addr; target_long val, sprval; start_exclusive(); addr = env->atomic_srca; if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { goto sigsegv_maperr; } if (cmp) { if (quad) { sprval = env->spregs[TILEGX_SPR_CMPEXCH]; } else { sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); } } if (!cmp || val == sprval) { target_long valb = env->atomic_srcb; if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { goto sigsegv_maperr; } } set_regval(env, env->atomic_dstr, val); end_exclusive(); return; sigsegv_maperr: end_exclusive(); gen_sigsegv_maperr(env, addr); } static void do_fetch(CPUTLGState *env, int trapnr, bool quad) { int8_t write = 1; target_ulong addr; target_long val, valb; start_exclusive(); addr = env->atomic_srca; valb = env->atomic_srcb; if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { goto sigsegv_maperr; } switch (trapnr) { case TILEGX_EXCP_OPCODE_FETCHADD: case TILEGX_EXCP_OPCODE_FETCHADD4: valb += val; break; case TILEGX_EXCP_OPCODE_FETCHADDGEZ: valb += val; if (valb < 0) { write = 0; } break; case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: valb += val; if ((int32_t)valb < 0) { write = 0; } break; case TILEGX_EXCP_OPCODE_FETCHAND: case TILEGX_EXCP_OPCODE_FETCHAND4: valb &= val; break; case TILEGX_EXCP_OPCODE_FETCHOR: case TILEGX_EXCP_OPCODE_FETCHOR4: valb |= val; break; default: g_assert_not_reached(); } if (write) { if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { goto sigsegv_maperr; } } set_regval(env, env->atomic_dstr, val); end_exclusive(); return; sigsegv_maperr: end_exclusive(); gen_sigsegv_maperr(env, addr); } void cpu_loop(CPUTLGState *env) { CPUState *cs = env_cpu(env); int trapnr; while (1) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch (trapnr) { case TILEGX_EXCP_SYSCALL: { abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR], env->regs[0], env->regs[1], env->regs[2], env->regs[3], env->regs[4], env->regs[5], env->regs[6], env->regs[7]); if (ret == -TARGET_ERESTARTSYS) { env->pc -= 8; } else if (ret != -TARGET_QEMU_ESIGRETURN) { env->regs[TILEGX_R_RE] = ret; env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0; } break; } case TILEGX_EXCP_OPCODE_EXCH: do_exch(env, true, false); break; case TILEGX_EXCP_OPCODE_EXCH4: do_exch(env, false, false); break; case TILEGX_EXCP_OPCODE_CMPEXCH: do_exch(env, true, true); break; case TILEGX_EXCP_OPCODE_CMPEXCH4: do_exch(env, false, true); break; case TILEGX_EXCP_OPCODE_FETCHADD: case TILEGX_EXCP_OPCODE_FETCHADDGEZ: case TILEGX_EXCP_OPCODE_FETCHAND: case TILEGX_EXCP_OPCODE_FETCHOR: do_fetch(env, trapnr, true); break; case TILEGX_EXCP_OPCODE_FETCHADD4: case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: case TILEGX_EXCP_OPCODE_FETCHAND4: case TILEGX_EXCP_OPCODE_FETCHOR4: do_fetch(env, trapnr, false); break; case TILEGX_EXCP_SIGNAL: do_signal(env, env->signo, env->sigcode); break; case TILEGX_EXCP_REG_IDN_ACCESS: case TILEGX_EXCP_REG_UDN_ACCESS: gen_sigill_reg(env); break; case EXCP_ATOMIC: cpu_exec_step_atomic(cs); break; default: fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); g_assert_not_reached(); } process_pending_signals(env); } } void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs) { int i; for (i = 0; i < TILEGX_R_COUNT; i++) { env->regs[i] = regs->regs[i]; } for (i = 0; i < TILEGX_SPR_COUNT; i++) { env->spregs[i] = 0; } env->pc = regs->pc; }