/* * QEMU PPC PREP hardware System Emulator * * Copyright (c) 2003-2004 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #include "m48t59.h" //#define HARD_DEBUG_PPC_IO //#define DEBUG_PPC_IO extern int loglevel; extern FILE *logfile; #if defined (HARD_DEBUG_PPC_IO) && !defined (DEBUG_PPC_IO) #define DEBUG_PPC_IO #endif #if defined (HARD_DEBUG_PPC_IO) #define PPC_IO_DPRINTF(fmt, args...) \ do { \ if (loglevel > 0) { \ fprintf(logfile, "%s: " fmt, __func__ , ##args); \ } else { \ printf("%s : " fmt, __func__ , ##args); \ } \ } while (0) #elif defined (DEBUG_PPC_IO) #define PPC_IO_DPRINTF(fmt, args...) \ do { \ if (loglevel > 0) { \ fprintf(logfile, "%s: " fmt, __func__ , ##args); \ } \ } while (0) #else #define PPC_IO_DPRINTF(fmt, args...) do { } while (0) #endif #define BIOS_FILENAME "ppc_rom.bin" #define KERNEL_LOAD_ADDR 0x00000000 #define KERNEL_STACK_ADDR 0x00400000 #define INITRD_LOAD_ADDR 0x00800000 int load_kernel(const char *filename, uint8_t *addr, uint8_t *real_addr) { int fd, size; int setup_sects; fd = open(filename, O_RDONLY); if (fd < 0) return -1; /* load 16 bit code */ if (read(fd, real_addr, 512) != 512) goto fail; setup_sects = real_addr[0x1F1]; if (!setup_sects) setup_sects = 4; if (read(fd, real_addr + 512, setup_sects * 512) != setup_sects * 512) goto fail; /* load 32 bit code */ size = read(fd, addr, 16 * 1024 * 1024); if (size < 0) goto fail; close(fd); return size; fail: close(fd); return -1; } static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 13, 13 }; #define NE2000_NB_MAX 6 static uint32_t ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; /* IO ports emulation */ #define PPC_IO_BASE 0x80000000 static void PPC_io_writeb (target_phys_addr_t addr, uint32_t value) { /* Don't polute serial port output */ #if 0 if ((addr < 0x800003F0 || addr > 0x80000400) && (addr < 0x80000074 || addr > 0x80000077) && (addr < 0x80000020 || addr > 0x80000021) && (addr < 0x800000a0 || addr > 0x800000a1) && (addr < 0x800001f0 || addr > 0x800001f7) && (addr < 0x80000170 || addr > 0x80000177)) #endif { PPC_IO_DPRINTF("0x%08x => 0x%02x\n", addr - PPC_IO_BASE, value); } cpu_outb(NULL, addr - PPC_IO_BASE, value); } static uint32_t PPC_io_readb (target_phys_addr_t addr) { uint32_t ret = cpu_inb(NULL, addr - PPC_IO_BASE); #if 0 if ((addr < 0x800003F0 || addr > 0x80000400) && (addr < 0x80000074 || addr > 0x80000077) && (addr < 0x80000020 || addr > 0x80000021) && (addr < 0x800000a0 || addr > 0x800000a1) && (addr < 0x800001f0 || addr > 0x800001f7) && (addr < 0x80000170 || addr > 0x80000177) && (addr < 0x8000060 || addr > 0x8000064)) #endif { PPC_IO_DPRINTF("0x%08x <= 0x%02x\n", addr - PPC_IO_BASE, ret); } return ret; } static void PPC_io_writew (target_phys_addr_t addr, uint32_t value) { if ((addr < 0x800001f0 || addr > 0x800001f7) && (addr < 0x80000170 || addr > 0x80000177)) { PPC_IO_DPRINTF("0x%08x => 0x%04x\n", addr - PPC_IO_BASE, value); } #ifdef TARGET_WORDS_BIGENDIAN value = bswap16(value); #endif cpu_outw(NULL, addr - PPC_IO_BASE, value); } static uint32_t PPC_io_readw (target_phys_addr_t addr) { uint32_t ret = cpu_inw(NULL, addr - PPC_IO_BASE); #ifdef TARGET_WORDS_BIGENDIAN ret = bswap16(ret); #endif if ((addr < 0x800001f0 || addr > 0x800001f7) && (addr < 0x80000170 || addr > 0x80000177)) { PPC_IO_DPRINTF("0x%08x <= 0x%04x\n", addr - PPC_IO_BASE, ret); } return ret; } static void PPC_io_writel (target_phys_addr_t addr, uint32_t value) { PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, value); #ifdef TARGET_WORDS_BIGENDIAN value = bswap32(value); #endif cpu_outl(NULL, addr - PPC_IO_BASE, value); } static uint32_t PPC_io_readl (target_phys_addr_t addr) { uint32_t ret = cpu_inl(NULL, addr - PPC_IO_BASE); #ifdef TARGET_WORDS_BIGENDIAN ret = bswap32(ret); #endif PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, ret); return ret; } static CPUWriteMemoryFunc *PPC_io_write[] = { &PPC_io_writeb, &PPC_io_writew, &PPC_io_writel, }; static CPUReadMemoryFunc *PPC_io_read[] = { &PPC_io_readb, &PPC_io_readw, &PPC_io_readl, }; /* Read-only register (?) */ static void _PPC_ioB_write (target_phys_addr_t addr, uint32_t value) { // printf("%s: 0x%08x => 0x%08x\n", __func__, addr, value); } static uint32_t _PPC_ioB_read (target_phys_addr_t addr) { uint32_t retval = 0; if (addr == 0xBFFFFFF0) retval = pic_intack_read(NULL); // printf("%s: 0x%08x <= %d\n", __func__, addr, retval); return retval; } static CPUWriteMemoryFunc *PPC_ioB_write[] = { &_PPC_ioB_write, &_PPC_ioB_write, &_PPC_ioB_write, }; static CPUReadMemoryFunc *PPC_ioB_read[] = { &_PPC_ioB_read, &_PPC_ioB_read, &_PPC_ioB_read, }; #if 0 static CPUWriteMemoryFunc *PPC_io3_write[] = { &PPC_io3_writeb, &PPC_io3_writew, &PPC_io3_writel, }; static CPUReadMemoryFunc *PPC_io3_read[] = { &PPC_io3_readb, &PPC_io3_readw, &PPC_io3_readl, }; #endif /* Fake super-io ports for PREP platform (Intel 82378ZB) */ static uint8_t PREP_fake_io[2]; static uint8_t NVRAM_lock; static void PREP_io_write (void *opaque, uint32_t addr, uint32_t val) { PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, val); PREP_fake_io[addr - 0x0398] = val; } static uint32_t PREP_io_read (void *opaque, uint32_t addr) { PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, PREP_fake_io[addr - 0x0398]); return PREP_fake_io[addr - 0x0398]; } static uint8_t syscontrol; static void PREP_io_800_writeb (void *opaque, uint32_t addr, uint32_t val) { PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, val); switch (addr) { case 0x0092: /* Special port 92 */ /* Check soft reset asked */ if (val & 0x80) { printf("Soft reset asked... Stop emulation\n"); abort(); } /* Check LE mode */ if (val & 0x40) { printf("Little Endian mode isn't supported (yet ?)\n"); abort(); } break; case 0x0808: /* Hardfile light register: don't care */ break; case 0x0810: /* Password protect 1 register */ NVRAM_lock ^= 0x01; break; case 0x0812: /* Password protect 2 register */ NVRAM_lock ^= 0x02; break; case 0x0814: /* L2 invalidate register: don't care */ break; case 0x081C: /* system control register */ syscontrol = val; break; case 0x0850: /* I/O map type register */ if (val & 0x80) { printf("No support for non-continuous I/O map mode\n"); abort(); } break; default: break; } } static uint32_t PREP_io_800_readb (void *opaque, uint32_t addr) { uint32_t retval = 0xFF; switch (addr) { case 0x0092: /* Special port 92 */ retval = 0x40; break; case 0x080C: /* Equipment present register: * no L2 cache * no upgrade processor * no cards in PCI slots * SCSI fuse is bad */ retval = 0xFC; break; case 0x0818: /* Keylock */ retval = 0x00; break; case 0x081C: /* system control register * 7 - 6 / 1 - 0: L2 cache enable */ retval = syscontrol; break; case 0x0823: /* */ retval = 0x03; /* no L2 cache */ break; case 0x0850: /* I/O map type register */ retval = 0x00; break; default: break; } PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, retval); return retval; } #define NVRAM_SIZE 0x2000 #define NVRAM_END 0x1FF0 #define NVRAM_OSAREA_SIZE 512 #define NVRAM_CONFSIZE 1024 static inline void NVRAM_set_byte (m48t59_t *nvram, uint32_t addr, uint8_t value) { m48t59_set_addr(nvram, addr); m48t59_write(nvram, value); } static inline uint8_t NVRAM_get_byte (m48t59_t *nvram, uint32_t addr) { m48t59_set_addr(nvram, addr); return m48t59_read(nvram); } static inline void NVRAM_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value) { m48t59_set_addr(nvram, addr); m48t59_write(nvram, value >> 8); m48t59_set_addr(nvram, addr + 1); m48t59_write(nvram, value & 0xFF); } static inline uint16_t NVRAM_get_word (m48t59_t *nvram, uint32_t addr) { uint16_t tmp; m48t59_set_addr(nvram, addr); tmp = m48t59_read(nvram) << 8; m48t59_set_addr(nvram, addr + 1); tmp |= m48t59_read(nvram); return tmp; } static inline void NVRAM_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value) { m48t59_set_addr(nvram, addr); m48t59_write(nvram, value >> 24); m48t59_set_addr(nvram, addr + 1); m48t59_write(nvram, (value >> 16) & 0xFF); m48t59_set_addr(nvram, addr + 2); m48t59_write(nvram, (value >> 8) & 0xFF); m48t59_set_addr(nvram, addr + 3); m48t59_write(nvram, value & 0xFF); } static inline uint32_t NVRAM_get_lword (m48t59_t *nvram, uint32_t addr) { uint32_t tmp; m48t59_set_addr(nvram, addr); tmp = m48t59_read(nvram) << 24; m48t59_set_addr(nvram, addr + 1); tmp |= m48t59_read(nvram) << 16; m48t59_set_addr(nvram, addr + 2); tmp |= m48t59_read(nvram) << 8; m48t59_set_addr(nvram, addr + 3); tmp |= m48t59_read(nvram); return tmp; } static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value) { uint16_t tmp; uint16_t pd, pd1, pd2; tmp = prev >> 8; pd = prev ^ value; pd1 = pd & 0x000F; pd2 = ((pd >> 4) & 0x000F) ^ pd1; tmp ^= (pd1 << 3) | (pd1 << 8); tmp ^= pd2 | (pd2 << 7) | (pd2 << 12); return tmp; } static void NVRAM_set_crc (m48t59_t *nvram, uint32_t addr, uint32_t start, uint32_t count) { uint32_t i; uint16_t crc = 0xFFFF; int odd = 0; if (count & 1) odd = 1; count &= ~1; for (i = 0; i != count; i++) { crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i)); } if (odd) { crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8); } NVRAM_set_word(nvram, addr, crc); } static void prep_NVRAM_init (void) { m48t59_t *nvram; nvram = m48t59_init(8, 0x0074, NVRAM_SIZE); /* NVRAM header */ /* 0x00: NVRAM size in kB */ NVRAM_set_word(nvram, 0x00, NVRAM_SIZE >> 10); /* 0x02: NVRAM version */ NVRAM_set_byte(nvram, 0x02, 0x01); /* 0x03: NVRAM revision */ NVRAM_set_byte(nvram, 0x03, 0x01); /* 0x08: last OS */ NVRAM_set_byte(nvram, 0x08, 0x00); /* Unknown */ /* 0x09: endian */ NVRAM_set_byte(nvram, 0x09, 'B'); /* Big-endian */ /* 0x0A: OSArea usage */ NVRAM_set_byte(nvram, 0x0A, 0x00); /* Empty */ /* 0x0B: PM mode */ NVRAM_set_byte(nvram, 0x0B, 0x00); /* Normal */ /* Restart block description record */ /* 0x0C: restart block version */ NVRAM_set_word(nvram, 0x0C, 0x01); /* 0x0E: restart block revision */ NVRAM_set_word(nvram, 0x0E, 0x01); /* 0x20: restart address */ NVRAM_set_lword(nvram, 0x20, 0x00); /* 0x24: save area address */ NVRAM_set_lword(nvram, 0x24, 0x00); /* 0x28: save area length */ NVRAM_set_lword(nvram, 0x28, 0x00); /* 0x1C: checksum of restart block */ NVRAM_set_crc(nvram, 0x1C, 0x0C, 32); /* Security section */ /* Set all to zero */ /* 0xC4: pointer to global environment area */ NVRAM_set_lword(nvram, 0xC4, 0x0100); /* 0xC8: size of global environment area */ NVRAM_set_lword(nvram, 0xC8, NVRAM_END - NVRAM_OSAREA_SIZE - NVRAM_CONFSIZE - 0x0100); /* 0xD4: pointer to configuration area */ NVRAM_set_lword(nvram, 0xD4, NVRAM_END - NVRAM_CONFSIZE); /* 0xD8: size of configuration area */ NVRAM_set_lword(nvram, 0xD8, NVRAM_CONFSIZE); /* 0xE8: pointer to OS specific area */ NVRAM_set_lword(nvram, 0xE8, NVRAM_END - NVRAM_CONFSIZE - NVRAM_OSAREA_SIZE); /* 0xD8: size of OS specific area */ NVRAM_set_lword(nvram, 0xEC, NVRAM_OSAREA_SIZE); /* Configuration area */ /* RTC init */ // NVRAM_set_lword(nvram, 0x1FFC, 0x50); /* 0x04: checksum 0 => OS area */ NVRAM_set_crc(nvram, 0x04, 0x00, NVRAM_END - NVRAM_CONFSIZE - NVRAM_OSAREA_SIZE); /* 0x06: checksum of config area */ NVRAM_set_crc(nvram, 0x06, NVRAM_END - NVRAM_CONFSIZE, NVRAM_CONFSIZE); } int load_initrd (const char *filename, uint8_t *addr) { int fd, size; printf("Load initrd\n"); fd = open(filename, O_RDONLY); if (fd < 0) return -1; size = read(fd, addr, 16 * 1024 * 1024); if (size < 0) goto fail; close(fd); printf("Load initrd: %d\n", size); return size; fail: close(fd); printf("Load initrd failed\n"); return -1; } /* Quick hack for PPC memory infos... */ static void put_long (void *addr, uint32_t l) { char *pos = addr; pos[0] = (l >> 24) & 0xFF; pos[1] = (l >> 16) & 0xFF; pos[2] = (l >> 8) & 0xFF; pos[3] = l & 0xFF; } /* bootloader infos are in the form: * uint32_t TAG * uint32_t TAG_size (from TAG to next TAG). * data * .... */ #if !defined (USE_OPEN_FIRMWARE) static void *set_bootinfo_tag (void *addr, uint32_t tag, uint32_t size, void *data) { char *pos = addr; put_long(pos, tag); pos += 4; put_long(pos, size + 8); pos += 4; memcpy(pos, data, size); pos += size; return pos; } #endif typedef struct boot_dev_t { const unsigned char *name; int major; int minor; } boot_dev_t; static boot_dev_t boot_devs[] = { { "/dev/fd0", 2, 0, }, { "/dev/fd1", 2, 1, }, { "/dev/hda", 3, 1, }, // { "/dev/ide/host0/bus0/target0/lun0/part1", 3, 1, }, // { "/dev/hdc", 22, 0, }, { "/dev/hdc", 22, 1, }, { "/dev/ram0 init=/linuxrc", 1, 0, }, }; /* BATU: * BEPI : bloc virtual address * BL : area size bits (128 kB is 0, 256 1, 512 3, ... * Vs/Vp * BATL: * BPRN : bloc real address align on 4MB boundary * WIMG : cache access mode : not used * PP : protection bits */ static void setup_BAT (CPUPPCState *env, int BAT, uint32_t virtual, uint32_t physical, uint32_t size, int Vs, int Vp, int PP) { uint32_t sz_bits, tmp_sz, align, tmp; sz_bits = 0; align = 131072; for (tmp_sz = size / 131072; tmp_sz != 1; tmp_sz = tmp_sz >> 1) { sz_bits = (sz_bits << 1) + 1; align = align << 1; } tmp = virtual & ~(align - 1); /* Align virtual area start */ tmp |= sz_bits << 2; /* Fix BAT size */ tmp |= Vs << 1; /* Supervisor access */ tmp |= Vp; /* User access */ env->DBAT[0][BAT] = tmp; env->IBAT[0][BAT] = tmp; tmp = physical & ~(align - 1); /* Align physical area start */ tmp |= 0; /* Don't care about WIMG */ tmp |= PP; /* Protection */ env->DBAT[1][BAT] = tmp; env->IBAT[1][BAT] = tmp; printf("Set BATU0 to 0x%08x BATL0 to 0x%08x\n", env->DBAT[0][BAT], env->DBAT[1][BAT]); } static void VGA_printf (uint8_t *s) { uint16_t *arg_ptr; unsigned int format_width, i; int in_format; uint16_t arg, digit, nibble; uint8_t c; arg_ptr = (uint16_t *)((void *)&s); in_format = 0; format_width = 0; while ((c = *s) != '\0') { if (c == '%') { in_format = 1; format_width = 0; } else if (in_format) { if ((c >= '0') && (c <= '9')) { format_width = (format_width * 10) + (c - '0'); } else if (c == 'x') { arg_ptr++; // increment to next arg arg = *arg_ptr; if (format_width == 0) format_width = 4; digit = format_width - 1; for (i = 0; i < format_width; i++) { nibble = (arg >> (4 * digit)) & 0x000f; if (nibble <= 9) PPC_io_writeb(PPC_IO_BASE + 0x500, nibble + '0'); else PPC_io_writeb(PPC_IO_BASE + 0x500, nibble + 'A'); digit--; } in_format = 0; } //else if (c == 'd') { // in_format = 0; // } } else { PPC_io_writeb(PPC_IO_BASE + 0x500, c); } s++; } } static void VGA_init (void) { /* Basic VGA init, inspired by plex86 VGAbios */ printf("Init VGA...\n"); #if 1 /* switch to color mode and enable CPU access 480 lines */ PPC_io_writeb(PPC_IO_BASE + 0x3C2, 0xC3); /* more than 64k 3C4/04 */ PPC_io_writeb(PPC_IO_BASE + 0x3C4, 0x04); PPC_io_writeb(PPC_IO_BASE + 0x3C5, 0x02); #endif VGA_printf("PPC VGA BIOS...\n"); } extern CPUPPCState *global_env; static uint32_t get_le32 (void *addr) { return le32_to_cpu(*((uint32_t *)addr)); } void PPC_init_hw (/*CPUPPCState *env,*/ uint32_t mem_size, uint32_t kernel_addr, uint32_t kernel_size, uint32_t stack_addr, int boot_device, const unsigned char *initrd_file) { CPUPPCState *env = global_env; uint8_t *p; #if !defined (USE_OPEN_FIRMWARE) char *tmp; uint32_t tmpi[2]; #endif printf("RAM size: %u 0x%08x (%u)\n", mem_size, mem_size, mem_size >> 20); #if defined (USE_OPEN_FIRMWARE) setup_memory(env, mem_size); #endif /* Fake bootloader */ { #if 1 uint32_t offset = get_le32(phys_ram_base + kernel_addr); #else uint32_t offset = 12; #endif env->nip = kernel_addr + offset; printf("Start address: 0x%08x\n", env->nip); } /* Set up msr according to PREP specification */ msr_ee = 0; msr_fp = 1; msr_pr = 0; /* Start in supervisor mode */ msr_me = 1; msr_fe0 = msr_fe1 = 0; msr_ip = 0; msr_ir = msr_dr = 1; // msr_sf = 0; msr_le = msr_ile = 0; env->gpr[1] = stack_addr; /* Let's have a stack */ env->gpr[2] = 0; env->gpr[8] = kernel_addr; /* There is a bug in 2.4 kernels: * if a decrementer exception is pending when it enables msr_ee, * it's not ready to handle it... */ env->decr = 0xFFFFFFFF; p = phys_ram_base + kernel_addr; #if !defined (USE_OPEN_FIRMWARE) /* Let's register the whole memory available only in supervisor mode */ setup_BAT(env, 0, 0x00000000, 0x00000000, mem_size, 1, 0, 2); /* Avoid open firmware init call (to get a console) * This will make the kernel think we are a PREP machine... */ put_long(p, 0xdeadc0de); /* Build a real stack room */ p = phys_ram_base + stack_addr; put_long(p, stack_addr); p -= 32; env->gpr[1] -= 32; /* Pretend there are no residual data */ env->gpr[3] = 0; if (initrd_file != NULL) { int size; env->gpr[4] = (kernel_addr + kernel_size + 4095) & ~4095; size = load_initrd(initrd_file, phys_ram_base + env->gpr[4]); if (size < 0) { /* No initrd */ env->gpr[4] = env->gpr[5] = 0; } else { env->gpr[5] = size; boot_device = 'e'; } printf("Initrd loaded at 0x%08x (%d) (0x%08x 0x%08x)\n", env->gpr[4], env->gpr[5], kernel_addr, kernel_size); } else { env->gpr[4] = env->gpr[5] = 0; } /* We have to put bootinfos after the BSS * The BSS starts after the kernel end. */ #if 0 p = phys_ram_base + kernel_addr + kernel_size + (1 << 20) - 1) & ~((1 << 20) - 1); #else p = phys_ram_base + kernel_addr + 0x400000; #endif if (loglevel > 0) { fprintf(logfile, "bootinfos: %p 0x%08x\n", p, (int)(p - phys_ram_base)); } else { printf("bootinfos: %p 0x%08x\n", p, (int)(p - phys_ram_base)); } /* Command line: let's put it after bootinfos */ #if 0 sprintf(p + 0x1000, "console=ttyS0,9600 root=%02x%02x mem=%dM", boot_devs[boot_device - 'a'].major, boot_devs[boot_device - 'a'].minor, mem_size >> 20); #else sprintf(p + 0x1000, "console=ttyS0,9600 console=tty0 root=%s mem=%dM", boot_devs[boot_device - 'a'].name, mem_size >> 20); #endif env->gpr[6] = p + 0x1000 - phys_ram_base; env->gpr[7] = env->gpr[6] + strlen(p + 0x1000); if (loglevel > 0) { fprintf(logfile, "cmdline: %p 0x%08x [%s]\n", p + 0x1000, env->gpr[6], p + 0x1000); } else { printf("cmdline: %p 0x%08x [%s]\n", p + 0x1000, env->gpr[6], p + 0x1000); } /* BI_FIRST */ p = set_bootinfo_tag(p, 0x1010, 0, 0); /* BI_CMD_LINE */ p = set_bootinfo_tag(p, 0x1012, env->gpr[7] - env->gpr[6], env->gpr[6] + phys_ram_base); /* BI_MEM_SIZE */ tmp = (void *)tmpi; tmp[0] = (mem_size >> 24) & 0xFF; tmp[1] = (mem_size >> 16) & 0xFF; tmp[2] = (mem_size >> 8) & 0xFF; tmp[3] = mem_size & 0xFF; p = set_bootinfo_tag(p, 0x1017, 4, tmpi); /* BI_INITRD */ tmp[0] = (env->gpr[4] >> 24) & 0xFF; tmp[1] = (env->gpr[4] >> 16) & 0xFF; tmp[2] = (env->gpr[4] >> 8) & 0xFF; tmp[3] = env->gpr[4] & 0xFF; tmp[4] = (env->gpr[5] >> 24) & 0xFF; tmp[5] = (env->gpr[5] >> 16) & 0xFF; tmp[6] = (env->gpr[5] >> 8) & 0xFF; tmp[7] = env->gpr[5] & 0xFF; p = set_bootinfo_tag(p, 0x1014, 8, tmpi); env->gpr[4] = env->gpr[5] = 0; /* BI_LAST */ p = set_bootinfo_tag(p, 0x1011, 0, 0); #else /* Set up MMU: * kernel is loaded at kernel_addr and wants to be seen at 0x01000000 */ setup_BAT(env, 0, 0x01000000, kernel_addr, 0x00400000, 1, 0, 2); { #if 0 uint32_t offset = get_le32(phys_ram_base + kernel_addr); #else uint32_t offset = 12; #endif env->nip = 0x01000000 | (kernel_addr + offset); printf("Start address: 0x%08x\n", env->nip); } env->gpr[1] = env->nip + (1 << 22); p = phys_ram_base + stack_addr; put_long(p - 32, stack_addr); env->gpr[1] -= 32; printf("Kernel starts at 0x%08x stack 0x%08x\n", env->nip, env->gpr[1]); /* We want all lower address not to be translated */ setup_BAT(env, 1, 0x00000000, 0x00000000, 0x010000000, 1, 1, 2); /* We also need a BAT to access OF */ setup_BAT(env, 2, 0xFFFE0000, mem_size - 131072, 131072, 1, 0, 1); /* Setup OF entry point */ { char *p; p = (char *)phys_ram_base + mem_size - 131072; /* Special opcode to call OF */ *p++ = 0x18; *p++ = 0x00; *p++ = 0x00; *p++ = 0x02; /* blr */ *p++ = 0x4E; *p++ = 0x80; *p++ = 0x00; *p++ = 0x20; } env->gpr[5] = 0xFFFE0000; /* Register translations */ { OF_transl_t translations[3] = { { 0x01000000, 0x00400000, kernel_addr, 0x00000002, }, { 0x00000000, 0x01000000, 0x00000000, 0x00000002, }, { 0xFFFE0000, 0x00020000, mem_size - (128 * 1024), 0x00000001, }, }; OF_register_translations(3, translations); } /* Quite artificial, for now */ OF_register_bus("isa", "isa"); OF_register_serial("isa", "serial", 4, 0x3f8); OF_register_stdio("serial", "serial"); /* Set up RTAS service */ RTAS_init(); /* Command line: let's put it just over the stack */ #if 0 #if 0 p = phys_ram_base + kernel_addr + kernel_size + (1 << 20) - 1) & ~((1 << 20) - 1); #else p = phys_ram_base + kernel_addr + 0x400000; #endif #if 1 sprintf(p, "console=ttyS0,9600 root=%02x%02x mem=%dM", boot_devs[boot_device - 'a'].major, boot_devs[boot_device - 'a'].minor, mem_size >> 20); #else sprintf(p, "console=ttyS0,9600 root=%s mem=%dM ne2000=0x300,9", boot_devs[boot_device - 'a'].name, mem_size >> 20); #endif OF_register_bootargs(p); #endif #endif } void PPC_end_init (void) { VGA_init(); } /* PowerPC PREP hardware initialisation */ void ppc_prep_init(int ram_size, int vga_ram_size, int boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename) { char buf[1024]; int PPC_io_memory; int ret, linux_boot, initrd_size, i, nb_nics1, fd; linux_boot = (kernel_filename != NULL); /* allocate RAM */ cpu_register_physical_memory(0, ram_size, 0); isa_mem_base = 0xc0000000; if (linux_boot) { /* now we can load the kernel */ ret = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); if (ret < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; #if 0 if (initrd_filename) { initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } #endif PPC_init_hw(/*env,*/ ram_size, KERNEL_LOAD_ADDR, ret, KERNEL_STACK_ADDR, boot_device, initrd_filename); } else { /* allocate ROM */ // snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME); snprintf(buf, sizeof(buf), "%s", BIOS_FILENAME); printf("load BIOS at %p\n", phys_ram_base + 0x000f0000); ret = load_image(buf, phys_ram_base + 0x000f0000); if (ret != 0x10000) { fprintf(stderr, "qemu: could not load PPC bios '%s' (%d)\n%m\n", buf, ret); exit(1); } } /* init basic PC hardware */ vga_initialize(ds, phys_ram_base + ram_size, ram_size, vga_ram_size); rtc_init(0x70, 8); pic_init(); // pit_init(0x40, 0); fd = serial_open_device(); serial_init(0x3f8, 4, fd); #if 1 nb_nics1 = nb_nics; if (nb_nics1 > NE2000_NB_MAX) nb_nics1 = NE2000_NB_MAX; for(i = 0; i < nb_nics1; i++) { isa_ne2000_init(ne2000_io[i], ne2000_irq[i], &nd_table[i]); } #endif for(i = 0; i < 2; i++) { isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i], bs_table[2 * i], bs_table[2 * i + 1]); } kbd_init(); AUD_init(); DMA_init(); // SB16_init(); fdctrl_init(6, 2, 0, 0x3f0, fd_table); /* Register 64 kB of IO space */ PPC_io_memory = cpu_register_io_memory(0, PPC_io_read, PPC_io_write); cpu_register_physical_memory(0x80000000, 0x10000, PPC_io_memory); /* Register fake IO ports for PREP */ register_ioport_read(0x398, 2, 1, &PREP_io_read, NULL); register_ioport_write(0x398, 2, 1, &PREP_io_write, NULL); /* System control ports */ register_ioport_write(0x0092, 0x1, 1, &PREP_io_800_writeb, NULL); register_ioport_read(0x0800, 0x52, 1, &PREP_io_800_readb, NULL); register_ioport_write(0x0800, 0x52, 1, &PREP_io_800_writeb, NULL); /* PCI intack location (0xfef00000 / 0xbffffff0) */ PPC_io_memory = cpu_register_io_memory(0, PPC_ioB_read, PPC_ioB_write); cpu_register_physical_memory(0xBFFFFFF0, 0x4, PPC_io_memory); // cpu_register_physical_memory(0xFEF00000, 0x4, PPC_io_memory); prep_NVRAM_init(); PPC_end_init(); }