/* * Arm SSE Subsystem System Timer * * Copyright (c) 2020 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* * This is a model of the "System timer" which is documented in * the Arm SSE-123 Example Subsystem Technical Reference Manual: * https://developer.arm.com/documentation/101370/latest/ * * The timer is based around a simple 64-bit incrementing counter * (readable from CNTPCT_HI/LO). The timer fires when * Counter - CompareValue >= 0. * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO. * CNTP_TVAL is an alternative view of the CompareValue defined by * TimerValue = CompareValue[31:0] - Counter[31:0] * which can be both read and written. * This part is similar to the generic timer in an Arm A-class CPU. * * The timer also has a separate auto-increment timer. When this * timer is enabled, then the AutoIncrValue is set to: * AutoIncrValue = Reload + Counter * and this timer fires when * Counter - AutoIncrValue >= 0 * at which point, an interrupt is generated and the new AutoIncrValue * is calculated. * When the auto-increment timer is enabled, interrupt generation * via the compare/timervalue registers is disabled. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/timer.h" #include "qapi/error.h" #include "trace.h" #include "hw/timer/sse-timer.h" #include "hw/timer/sse-counter.h" #include "hw/sysbus.h" #include "hw/irq.h" #include "hw/registerfields.h" #include "hw/clock.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" REG32(CNTPCT_LO, 0x0) REG32(CNTPCT_HI, 0x4) REG32(CNTFRQ, 0x10) REG32(CNTP_CVAL_LO, 0x20) REG32(CNTP_CVAL_HI, 0x24) REG32(CNTP_TVAL, 0x28) REG32(CNTP_CTL, 0x2c) FIELD(CNTP_CTL, ENABLE, 0, 1) FIELD(CNTP_CTL, IMASK, 1, 1) FIELD(CNTP_CTL, ISTATUS, 2, 1) REG32(CNTP_AIVAL_LO, 0x40) REG32(CNTP_AIVAL_HI, 0x44) REG32(CNTP_AIVAL_RELOAD, 0x48) REG32(CNTP_AIVAL_CTL, 0x4c) FIELD(CNTP_AIVAL_CTL, EN, 0, 1) FIELD(CNTP_AIVAL_CTL, CLR, 1, 1) REG32(CNTP_CFG, 0x50) FIELD(CNTP_CFG, AIVAL, 0, 4) #define R_CNTP_CFG_AIVAL_IMPLEMENTED 1 REG32(PID4, 0xFD0) REG32(PID5, 0xFD4) REG32(PID6, 0xFD8) REG32(PID7, 0xFDC) REG32(PID0, 0xFE0) REG32(PID1, 0xFE4) REG32(PID2, 0xFE8) REG32(PID3, 0xFEC) REG32(CID0, 0xFF0) REG32(CID1, 0xFF4) REG32(CID2, 0xFF8) REG32(CID3, 0xFFC) /* PID/CID values */ static const int timer_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; static bool sse_is_autoinc(SSETimer *s) { return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0; } static bool sse_enabled(SSETimer *s) { return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0; } static uint64_t sse_cntpct(SSETimer *s) { /* Return the CNTPCT value for the current time */ return sse_counter_for_timestamp(s->counter, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } static bool sse_timer_status(SSETimer *s) { /* * Return true if timer condition is met. This is used for both * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we * assert our IRQ. * The documentation is unclear about the behaviour of ISTATUS when * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR * (ie whether the autoincrement timer is asserting the interrupt). */ if (!sse_enabled(s)) { return false; } if (sse_is_autoinc(s)) { return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK; } else { return sse_cntpct(s) >= s->cntp_cval; } } static void sse_update_irq(SSETimer *s) { bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) && sse_timer_status(s)); qemu_set_irq(s->irq, irqstate); } static void sse_set_timer(SSETimer *s, uint64_t nexttick) { /* Set the timer to expire at nexttick */ uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick); if (expiry <= INT64_MAX) { timer_mod_ns(&s->timer, expiry); } else { /* * nexttick is so far in the future that it would overflow the * signed 64-bit range of a QEMUTimer. Since timer_mod_ns() * expiry times are absolute, not relative, we are never going * to be able to set the timer to this value, so we must just * assume that guest execution can never run so long that it * reaches the theoretical point when the timer fires. * This is also the code path for "counter is not running", * which is signalled by expiry == UINT64_MAX. */ timer_del(&s->timer); } } static void sse_recalc_timer(SSETimer *s) { /* Recalculate the normal timer */ uint64_t count, nexttick; if (sse_is_autoinc(s)) { return; } if (!sse_enabled(s)) { timer_del(&s->timer); return; } count = sse_cntpct(s); if (count >= s->cntp_cval) { /* * Timer condition already met. In theory we have a transition when * the count rolls back over to 0, but that is so far in the future * that it is not representable as a timer_mod() expiry, so in * fact sse_set_timer() will always just delete the timer. */ nexttick = UINT64_MAX; } else { /* Next transition is when count hits cval */ nexttick = s->cntp_cval; } sse_set_timer(s, nexttick); sse_update_irq(s); } static void sse_autoinc(SSETimer *s) { /* Auto-increment the AIVAL, and set the timer accordingly */ s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload; sse_set_timer(s, s->cntp_aival); } static void sse_timer_cb(void *opaque) { SSETimer *s = SSE_TIMER(opaque); if (sse_is_autoinc(s)) { uint64_t count = sse_cntpct(s); if (count >= s->cntp_aival) { /* Timer condition met, set CLR and do another autoinc */ s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK; s->cntp_aival = count + s->cntp_aival_reload; } sse_set_timer(s, s->cntp_aival); sse_update_irq(s); } else { sse_recalc_timer(s); } } static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size) { SSETimer *s = SSE_TIMER(opaque); uint64_t r; switch (offset) { case A_CNTPCT_LO: r = extract64(sse_cntpct(s), 0, 32); break; case A_CNTPCT_HI: r = extract64(sse_cntpct(s), 32, 32); break; case A_CNTFRQ: r = s->cntfrq; break; case A_CNTP_CVAL_LO: r = extract64(s->cntp_cval, 0, 32); break; case A_CNTP_CVAL_HI: r = extract64(s->cntp_cval, 32, 32); break; case A_CNTP_TVAL: r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32); break; case A_CNTP_CTL: r = s->cntp_ctl; if (sse_timer_status(s)) { r |= R_CNTP_CTL_ISTATUS_MASK; } break; case A_CNTP_AIVAL_LO: r = extract64(s->cntp_aival, 0, 32); break; case A_CNTP_AIVAL_HI: r = extract64(s->cntp_aival, 32, 32); break; case A_CNTP_AIVAL_RELOAD: r = s->cntp_aival_reload; break; case A_CNTP_AIVAL_CTL: /* * All the bits of AIVAL_CTL are documented as WO, but this is probably * a documentation error. We implement them as readable. */ r = s->cntp_aival_ctl; break; case A_CNTP_CFG: r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT; break; case A_PID4 ... A_CID3: r = timer_id[(offset - A_PID4) / 4]; break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Timer read: bad offset 0x%x", (unsigned) offset); r = 0; break; } trace_sse_timer_read(offset, r, size); return r; } static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { SSETimer *s = SSE_TIMER(opaque); trace_sse_timer_write(offset, value, size); switch (offset) { case A_CNTFRQ: s->cntfrq = value; break; case A_CNTP_CVAL_LO: s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value); sse_recalc_timer(s); break; case A_CNTP_CVAL_HI: s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value); sse_recalc_timer(s); break; case A_CNTP_TVAL: s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32); sse_recalc_timer(s); break; case A_CNTP_CTL: { uint32_t old_ctl = s->cntp_ctl; value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK; s->cntp_ctl = value; if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) { if (sse_enabled(s)) { if (sse_is_autoinc(s)) { sse_autoinc(s); } else { sse_recalc_timer(s); } } } sse_update_irq(s); break; } case A_CNTP_AIVAL_RELOAD: s->cntp_aival_reload = value; break; case A_CNTP_AIVAL_CTL: { uint32_t old_ctl = s->cntp_aival_ctl; /* EN bit is writable; CLR bit is write-0-to-clear, write-1-ignored */ s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK; s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK; if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) { s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK; } if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) { /* Auto-increment toggled on/off */ if (sse_enabled(s)) { if (sse_is_autoinc(s)) { sse_autoinc(s); } else { sse_recalc_timer(s); } } } sse_update_irq(s); break; } case A_CNTPCT_LO: case A_CNTPCT_HI: case A_CNTP_CFG: case A_CNTP_AIVAL_LO: case A_CNTP_AIVAL_HI: case A_PID4 ... A_CID3: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Timer write: write to RO offset 0x%x\n", (unsigned)offset); break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Timer write: bad offset 0x%x\n", (unsigned)offset); break; } } static const MemoryRegionOps sse_timer_ops = { .read = sse_timer_read, .write = sse_timer_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid.min_access_size = 4, .valid.max_access_size = 4, }; static void sse_timer_reset(DeviceState *dev) { SSETimer *s = SSE_TIMER(dev); trace_sse_timer_reset(); timer_del(&s->timer); s->cntfrq = 0; s->cntp_ctl = 0; s->cntp_cval = 0; s->cntp_aival = 0; s->cntp_aival_ctl = 0; s->cntp_aival_reload = 0; } static void sse_timer_counter_callback(Notifier *notifier, void *data) { SSETimer *s = container_of(notifier, SSETimer, counter_notifier); /* System counter told us we need to recalculate */ if (sse_enabled(s)) { if (sse_is_autoinc(s)) { sse_set_timer(s, s->cntp_aival); } else { sse_recalc_timer(s); } } } static void sse_timer_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); SSETimer *s = SSE_TIMER(obj); memory_region_init_io(&s->iomem, obj, &sse_timer_ops, s, "sse-timer", 0x1000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); } static void sse_timer_realize(DeviceState *dev, Error **errp) { SSETimer *s = SSE_TIMER(dev); if (!s->counter) { error_setg(errp, "counter property was not set"); return; } s->counter_notifier.notify = sse_timer_counter_callback; sse_counter_register_consumer(s->counter, &s->counter_notifier); timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s); } static const VMStateDescription sse_timer_vmstate = { .name = "sse-timer", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_TIMER(timer, SSETimer), VMSTATE_UINT32(cntfrq, SSETimer), VMSTATE_UINT32(cntp_ctl, SSETimer), VMSTATE_UINT64(cntp_cval, SSETimer), VMSTATE_UINT64(cntp_aival, SSETimer), VMSTATE_UINT32(cntp_aival_ctl, SSETimer), VMSTATE_UINT32(cntp_aival_reload, SSETimer), VMSTATE_END_OF_LIST() } }; static Property sse_timer_properties[] = { DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *), DEFINE_PROP_END_OF_LIST(), }; static void sse_timer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sse_timer_realize; dc->vmsd = &sse_timer_vmstate; device_class_set_legacy_reset(dc, sse_timer_reset); device_class_set_props(dc, sse_timer_properties); } static const TypeInfo sse_timer_info = { .name = TYPE_SSE_TIMER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SSETimer), .instance_init = sse_timer_init, .class_init = sse_timer_class_init, }; static void sse_timer_register_types(void) { type_register_static(&sse_timer_info); } type_init(sse_timer_register_types);