/* * QTest testcase for PowerNV 10 interrupt controller (xive2) * - Test irq to hardware thread * - Test 'Pull Thread Context to Odd Thread Reporting Line' * * Copyright (c) 2024, IBM Corporation. * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "qemu/osdep.h" #include "libqtest.h" #include "pnv-xive2-common.h" #include "hw/intc/pnv_xive2_regs.h" #include "hw/ppc/xive_regs.h" #include "hw/ppc/xive2_regs.h" #define SMT 4 /* some tests will break if less than 4 */ static void set_table(QTestState *qts, uint64_t type, uint64_t addr) { uint64_t vsd, size, log_size; /* * First, let's make sure that all the resources used fit in the * given table. */ switch (type) { case VST_ESB: size = MAX_IRQS / 4; break; case VST_EAS: size = MAX_IRQS * 8; break; case VST_END: size = MAX_ENDS * 32; break; case VST_NVP: case VST_NVG: case VST_NVC: size = MAX_VPS * 32; break; case VST_SYNC: size = 64 * 1024; break; default: g_assert_not_reached(); } g_assert_cmpuint(size, <=, XIVE_VST_SIZE); log_size = ctzl(XIVE_VST_SIZE) - 12; vsd = ((uint64_t) VSD_MODE_EXCLUSIVE) << 62 | addr | log_size; pnv_xive_xscom_write(qts, X_VC_VSD_TABLE_ADDR, type << 48); pnv_xive_xscom_write(qts, X_VC_VSD_TABLE_DATA, vsd); if (type != VST_EAS && type != VST_IC && type != VST_ERQ) { pnv_xive_xscom_write(qts, X_PC_VSD_TABLE_ADDR, type << 48); pnv_xive_xscom_write(qts, X_PC_VSD_TABLE_DATA, vsd); } } static void set_tima8(QTestState *qts, uint32_t pir, uint32_t offset, uint8_t b) { uint64_t ic_addr; ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT); qtest_writeb(qts, ic_addr + offset, b); } static void set_tima32(QTestState *qts, uint32_t pir, uint32_t offset, uint32_t l) { uint64_t ic_addr; ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT); qtest_writel(qts, ic_addr + offset, l); } static uint8_t get_tima8(QTestState *qts, uint32_t pir, uint32_t offset) { uint64_t ic_addr; ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT); return qtest_readb(qts, ic_addr + offset); } static uint16_t get_tima16(QTestState *qts, uint32_t pir, uint32_t offset) { uint64_t ic_addr; ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT); return qtest_readw(qts, ic_addr + offset); } static uint32_t get_tima32(QTestState *qts, uint32_t pir, uint32_t offset) { uint64_t ic_addr; ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT); return qtest_readl(qts, ic_addr + offset); } static void reset_pool_threads(QTestState *qts) { uint8_t first_group = 0; int i; for (i = 0; i < SMT; i++) { uint32_t nvp_idx = 0x100 + i; set_nvp(qts, nvp_idx, first_group); set_tima32(qts, i, TM_QW2_HV_POOL + TM_WORD0, 0x000000ff); set_tima32(qts, i, TM_QW2_HV_POOL + TM_WORD1, 0); set_tima32(qts, i, TM_QW2_HV_POOL + TM_WORD2, TM_QW2W2_VP | nvp_idx); } } static void reset_hw_threads(QTestState *qts) { uint8_t first_group = 0; uint32_t w1 = 0x000000ff; int i; if (SMT >= 4) { /* define 2 groups of 2, part of a bigger group of size 4 */ set_nvg(qts, 0x80, 0x02); set_nvg(qts, 0x82, 0x02); set_nvg(qts, 0x81, 0); first_group = 0x01; w1 = 0x000300ff; } for (i = 0; i < SMT; i++) { set_nvp(qts, 0x80 + i, first_group); set_tima32(qts, i, TM_QW3_HV_PHYS + TM_WORD0, 0x00ff00ff); set_tima32(qts, i, TM_QW3_HV_PHYS + TM_WORD1, w1); set_tima32(qts, i, TM_QW3_HV_PHYS + TM_WORD2, 0x80000000); } } static void reset_state(QTestState *qts) { size_t mem_used = XIVE_MEM_END - XIVE_MEM_START; qtest_memset(qts, XIVE_MEM_START, 0, mem_used); reset_hw_threads(qts); reset_pool_threads(qts); } static void init_xive(QTestState *qts) { uint64_t val1, val2, range; /* * We can take a few shortcuts here, as we know the default values * used for xive initialization */ /* * Set the BARs. * We reuse the same values used by firmware to ease debug. */ pnv_xive_xscom_write(qts, X_CQ_IC_BAR, XIVE_IC_BAR); pnv_xive_xscom_write(qts, X_CQ_TM_BAR, XIVE_TM_BAR); /* ESB and NVPG use 2 pages per resource. The others only one page */ range = (MAX_IRQS << 17) >> 25; val1 = XIVE_ESB_BAR | range; pnv_xive_xscom_write(qts, X_CQ_ESB_BAR, val1); range = (MAX_ENDS << 16) >> 25; val1 = XIVE_END_BAR | range; pnv_xive_xscom_write(qts, X_CQ_END_BAR, val1); range = (MAX_VPS << 17) >> 25; val1 = XIVE_NVPG_BAR | range; pnv_xive_xscom_write(qts, X_CQ_NVPG_BAR, val1); range = (MAX_VPS << 16) >> 25; val1 = XIVE_NVC_BAR | range; pnv_xive_xscom_write(qts, X_CQ_NVC_BAR, val1); /* * Enable hw threads. * We check the value written. Useless with current * implementation, but it validates the xscom read path and it's * what the hardware procedure says */ val1 = 0xF000000000000000ull; /* core 0, 4 threads */ pnv_xive_xscom_write(qts, X_TCTXT_EN0, val1); val2 = pnv_xive_xscom_read(qts, X_TCTXT_EN0); g_assert_cmphex(val1, ==, val2); /* Memory tables */ set_table(qts, VST_ESB, XIVE_ESB_MEM); set_table(qts, VST_EAS, XIVE_EAS_MEM); set_table(qts, VST_END, XIVE_END_MEM); set_table(qts, VST_NVP, XIVE_NVP_MEM); set_table(qts, VST_NVG, XIVE_NVG_MEM); set_table(qts, VST_NVC, XIVE_NVC_MEM); set_table(qts, VST_SYNC, XIVE_SYNC_MEM); reset_hw_threads(qts); reset_pool_threads(qts); } static void test_hw_irq(QTestState *qts) { uint32_t irq = 2; uint32_t irq_data = 0x600df00d; uint32_t end_index = 5; uint32_t target_pir = 1; uint32_t target_nvp = 0x80 + target_pir; uint8_t priority = 5; uint32_t reg32; uint16_t reg16; uint8_t pq, nsr, cppr; printf("# ============================================================\n"); printf("# Testing irq %d to hardware thread %d\n", irq, target_pir); /* irq config */ set_eas(qts, irq, end_index, irq_data); set_end(qts, end_index, target_nvp, priority, false /* group */); /* enable and trigger irq */ get_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_SET_PQ_00); set_esb(qts, irq, XIVE_TRIGGER_PAGE, 0, 0); /* check irq is raised on cpu */ pq = get_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_GET); g_assert_cmpuint(pq, ==, XIVE_ESB_PENDING); reg32 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD0); nsr = reg32 >> 24; cppr = (reg32 >> 16) & 0xFF; g_assert_cmphex(nsr, ==, 0x80); g_assert_cmphex(cppr, ==, 0xFF); /* ack the irq */ reg16 = get_tima16(qts, target_pir, TM_SPC_ACK_HV_REG); nsr = reg16 >> 8; cppr = reg16 & 0xFF; g_assert_cmphex(nsr, ==, 0x80); g_assert_cmphex(cppr, ==, priority); /* check irq data is what was configured */ reg32 = qtest_readl(qts, xive_get_queue_addr(end_index)); g_assert_cmphex((reg32 & 0x7fffffff), ==, (irq_data & 0x7fffffff)); /* End Of Interrupt */ set_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_STORE_EOI, 0); pq = get_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_GET); g_assert_cmpuint(pq, ==, XIVE_ESB_RESET); /* reset CPPR */ set_tima8(qts, target_pir, TM_QW3_HV_PHYS + TM_CPPR, 0xFF); reg32 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD0); nsr = reg32 >> 24; cppr = (reg32 >> 16) & 0xFF; g_assert_cmphex(nsr, ==, 0x00); g_assert_cmphex(cppr, ==, 0xFF); } #define XIVE_ODD_CL 0x80 static void test_pull_thread_ctx_to_odd_thread_cl(QTestState *qts) { uint32_t target_pir = 1; uint32_t target_nvp = 0x80 + target_pir; Xive2Nvp nvp; uint8_t cl_pair[XIVE_REPORT_SIZE]; uint32_t qw1w0, qw3w0, qw1w2, qw2w2; uint8_t qw3b8; uint32_t cl_word; uint32_t word2; printf("# ============================================================\n"); printf("# Testing 'Pull Thread Context to Odd Thread Reporting Line'\n"); /* clear odd cache line prior to pull operation */ memset(cl_pair, 0, sizeof(cl_pair)); get_nvp(qts, target_nvp, &nvp); set_cl_pair(qts, &nvp, cl_pair); /* Read some values from TIMA that we expect to see in cacheline */ qw1w0 = get_tima32(qts, target_pir, TM_QW1_OS + TM_WORD0); qw3w0 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD0); qw1w2 = get_tima32(qts, target_pir, TM_QW1_OS + TM_WORD2); qw2w2 = get_tima32(qts, target_pir, TM_QW2_HV_POOL + TM_WORD2); qw3b8 = get_tima8(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD2); /* Execute the pull operation */ set_tima8(qts, target_pir, TM_SPC_PULL_PHYS_CTX_OL, 0); /* Verify odd cache line values match TIMA after pull operation */ get_cl_pair(qts, &nvp, cl_pair); memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW1_OS + TM_WORD0], 4); g_assert_cmphex(qw1w0, ==, be32_to_cpu(cl_word)); memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW3_HV_PHYS + TM_WORD0], 4); g_assert_cmphex(qw3w0, ==, be32_to_cpu(cl_word)); memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW1_OS + TM_WORD2], 4); g_assert_cmphex(qw1w2, ==, be32_to_cpu(cl_word)); memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW2_HV_POOL + TM_WORD2], 4); g_assert_cmphex(qw2w2, ==, be32_to_cpu(cl_word)); g_assert_cmphex(qw3b8, ==, cl_pair[XIVE_ODD_CL + TM_QW3_HV_PHYS + TM_WORD2]); /* Verify that all TIMA valid bits for target thread are cleared */ word2 = get_tima32(qts, target_pir, TM_QW1_OS + TM_WORD2); g_assert_cmphex(xive_get_field32(TM_QW1W2_VO, word2), ==, 0); word2 = get_tima32(qts, target_pir, TM_QW2_HV_POOL + TM_WORD2); g_assert_cmphex(xive_get_field32(TM_QW2W2_VP, word2), ==, 0); word2 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD2); g_assert_cmphex(xive_get_field32(TM_QW3W2_VT, word2), ==, 0); } static void test_xive(void) { QTestState *qts; qts = qtest_initf("-M powernv10 -smp %d,cores=1,threads=%d -nographic " "-nodefaults -serial mon:stdio -S " "-d guest_errors -trace '*xive*'", SMT, SMT); init_xive(qts); test_hw_irq(qts); /* omit reset_state here and use settings from test_hw_irq */ test_pull_thread_ctx_to_odd_thread_cl(qts); reset_state(qts); test_flush_sync_inject(qts); qtest_quit(qts); } int main(int argc, char **argv) { g_test_init(&argc, &argv, NULL); qtest_add_func("xive2", test_xive); return g_test_run(); }