/* * QEMU AArch64 CPU * * Copyright (c) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "qemu-common.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #endif #include "hw/arm/arm.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" static inline void set_feature(CPUARMState *env, int feature) { env->features |= 1ULL << feature; } static inline void unset_feature(CPUARMState *env, int feature) { env->features &= ~(1ULL << feature); } #ifndef CONFIG_USER_ONLY static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* Number of processors is in [25:24]; otherwise we RAZ */ return (smp_cpus - 1) << 24; } #endif static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = { #ifndef CONFIG_USER_ONLY { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, .writefn = arm_cp_write_ignore }, { .name = "L2CTLR", .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, .writefn = arm_cp_write_ignore }, #endif { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2ECTLR", .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR", .cp = 15, .opc1 = 0, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUECTLR", .cp = 15, .opc1 = 1, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUMERRSR", .cp = 15, .opc1 = 2, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2MERRSR", .cp = 15, .opc1 = 3, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, REGINFO_SENTINEL }; static void aarch64_a57_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a57"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_V8_AES); set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; cpu->midr = 0x411fd070; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->mvfr0 = 0x10110222; cpu->mvfr1 = 0x12111111; cpu->mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x10101105; cpu->id_mmfr1 = 0x40000000; cpu->id_mmfr2 = 0x01260000; cpu->id_mmfr3 = 0x02102211; cpu->id_isar0 = 0x02101110; cpu->id_isar1 = 0x13112111; cpu->id_isar2 = 0x21232042; cpu->id_isar3 = 0x01112131; cpu->id_isar4 = 0x00011142; cpu->id_isar5 = 0x00011121; cpu->id_aa64pfr0 = 0x00002222; cpu->id_aa64dfr0 = 0x10305106; cpu->pmceid0 = 0x00000000; cpu->pmceid1 = 0x00000000; cpu->id_aa64isar0 = 0x00011120; cpu->id_aa64mmfr0 = 0x00001124; cpu->dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo); } static void aarch64_a53_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a53"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_V8_AES); set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; cpu->midr = 0x410fd034; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->mvfr0 = 0x10110222; cpu->mvfr1 = 0x12111111; cpu->mvfr2 = 0x00000043; cpu->ctr = 0x84448004; /* L1Ip = VIPT */ cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x10101105; cpu->id_mmfr1 = 0x40000000; cpu->id_mmfr2 = 0x01260000; cpu->id_mmfr3 = 0x02102211; cpu->id_isar0 = 0x02101110; cpu->id_isar1 = 0x13112111; cpu->id_isar2 = 0x21232042; cpu->id_isar3 = 0x01112131; cpu->id_isar4 = 0x00011142; cpu->id_isar5 = 0x00011121; cpu->id_aa64pfr0 = 0x00002222; cpu->id_aa64dfr0 = 0x10305106; cpu->id_aa64isar0 = 0x00011120; cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ cpu->dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo); } #ifdef CONFIG_USER_ONLY static void aarch64_any_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_V8_AES); set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_SHA512); set_feature(&cpu->env, ARM_FEATURE_V8_SHA3); set_feature(&cpu->env, ARM_FEATURE_V8_SM3); set_feature(&cpu->env, ARM_FEATURE_V8_SM4); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); set_feature(&cpu->env, ARM_FEATURE_V8_RDM); set_feature(&cpu->env, ARM_FEATURE_V8_FP16); cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ cpu->dcz_blocksize = 7; /* 512 bytes */ } #endif typedef struct ARMCPUInfo { const char *name; void (*initfn)(Object *obj); void (*class_init)(ObjectClass *oc, void *data); } ARMCPUInfo; static const ARMCPUInfo aarch64_cpus[] = { { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, #ifdef CONFIG_USER_ONLY { .name = "any", .initfn = aarch64_any_initfn }, #endif { .name = NULL } }; static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); } static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); /* At this time, this property is only allowed if KVM is enabled. This * restriction allows us to avoid fixing up functionality that assumes a * uniform execution state like do_interrupt. */ if (!kvm_enabled()) { error_setg(errp, "'aarch64' feature cannot be disabled " "unless KVM is enabled"); return; } if (value == false) { unset_feature(&cpu->env, ARM_FEATURE_AARCH64); } else { set_feature(&cpu->env, ARM_FEATURE_AARCH64); } } static void aarch64_cpu_initfn(Object *obj) { object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, aarch64_cpu_set_aarch64, NULL); object_property_set_description(obj, "aarch64", "Set on/off to enable/disable aarch64 " "execution state ", NULL); } static void aarch64_cpu_finalizefn(Object *obj) { } static void aarch64_cpu_set_pc(CPUState *cs, vaddr value) { ARMCPU *cpu = ARM_CPU(cs); /* It's OK to look at env for the current mode here, because it's * never possible for an AArch64 TB to chain to an AArch32 TB. * (Otherwise we would need to use synchronize_from_tb instead.) */ if (is_a64(&cpu->env)) { cpu->env.pc = value; } else { cpu->env.regs[15] = value; } } static gchar *aarch64_gdb_arch_name(CPUState *cs) { return g_strdup("aarch64"); } static void aarch64_cpu_class_init(ObjectClass *oc, void *data) { CPUClass *cc = CPU_CLASS(oc); cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; cc->set_pc = aarch64_cpu_set_pc; cc->gdb_read_register = aarch64_cpu_gdb_read_register; cc->gdb_write_register = aarch64_cpu_gdb_write_register; cc->gdb_num_core_regs = 34; cc->gdb_core_xml_file = "aarch64-core.xml"; cc->gdb_arch_name = aarch64_gdb_arch_name; } static void aarch64_cpu_register(const ARMCPUInfo *info) { TypeInfo type_info = { .parent = TYPE_AARCH64_CPU, .instance_size = sizeof(ARMCPU), .instance_init = info->initfn, .class_size = sizeof(ARMCPUClass), .class_init = info->class_init, }; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(&type_info); g_free((void *)type_info.name); } static const TypeInfo aarch64_cpu_type_info = { .name = TYPE_AARCH64_CPU, .parent = TYPE_ARM_CPU, .instance_size = sizeof(ARMCPU), .instance_init = aarch64_cpu_initfn, .instance_finalize = aarch64_cpu_finalizefn, .abstract = true, .class_size = sizeof(AArch64CPUClass), .class_init = aarch64_cpu_class_init, }; static void aarch64_cpu_register_types(void) { const ARMCPUInfo *info = aarch64_cpus; type_register_static(&aarch64_cpu_type_info); while (info->name) { aarch64_cpu_register(info); info++; } } type_init(aarch64_cpu_register_types)