/* * Simple C functions to supplement the C library * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/host-utils.h" #include #ifdef __FreeBSD__ #include #include #endif #ifdef __NetBSD__ #include #endif #ifdef __HAIKU__ #include #endif #ifdef __APPLE__ #include #endif #ifdef G_OS_WIN32 #include #include #endif #include "qemu/ctype.h" #include "qemu/cutils.h" #include "qemu/error-report.h" void strpadcpy(char *buf, int buf_size, const char *str, char pad) { int len = qemu_strnlen(str, buf_size); memcpy(buf, str, len); memset(buf + len, pad, buf_size - len); } void pstrcpy(char *buf, int buf_size, const char *str) { int c; char *q = buf; if (buf_size <= 0) return; for(;;) { c = *str++; if (c == 0 || q >= buf + buf_size - 1) break; *q++ = c; } *q = '\0'; } /* strcat and truncate. */ char *pstrcat(char *buf, int buf_size, const char *s) { int len; len = strlen(buf); if (len < buf_size) pstrcpy(buf + len, buf_size - len, s); return buf; } int strstart(const char *str, const char *val, const char **ptr) { const char *p, *q; p = str; q = val; while (*q != '\0') { if (*p != *q) return 0; p++; q++; } if (ptr) *ptr = p; return 1; } int stristart(const char *str, const char *val, const char **ptr) { const char *p, *q; p = str; q = val; while (*q != '\0') { if (qemu_toupper(*p) != qemu_toupper(*q)) return 0; p++; q++; } if (ptr) *ptr = p; return 1; } /* XXX: use host strnlen if available ? */ int qemu_strnlen(const char *s, int max_len) { int i; for(i = 0; i < max_len; i++) { if (s[i] == '\0') { break; } } return i; } char *qemu_strsep(char **input, const char *delim) { char *result = *input; if (result != NULL) { char *p; for (p = result; *p != '\0'; p++) { if (strchr(delim, *p)) { break; } } if (*p == '\0') { *input = NULL; } else { *p = '\0'; *input = p + 1; } } return result; } time_t mktimegm(struct tm *tm) { time_t t; int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; if (m < 3) { m += 12; y--; } t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + y / 400 - 719469); t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; return t; } static int64_t suffix_mul(char suffix, int64_t unit) { switch (qemu_toupper(suffix)) { case 'B': return 1; case 'K': return unit; case 'M': return unit * unit; case 'G': return unit * unit * unit; case 'T': return unit * unit * unit * unit; case 'P': return unit * unit * unit * unit * unit; case 'E': return unit * unit * unit * unit * unit * unit; } return -1; } /* * Convert size string to bytes. * * The size parsing supports the following syntaxes * - 12345 - decimal, scale determined by @default_suffix and @unit * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and * fractional portion is truncated to byte, either side of . may be empty * - 0x7fEE - hexadecimal, unit determined by @default_suffix * * The following are intentionally not supported * - hex with scaling suffix, such as 0x20M or 0x1p3 (both fail with * -EINVAL), while 0x1b is 27 (not 1 with byte scale) * - octal, such as 08 (parsed as decimal instead) * - binary, such as 0b1000 (parsed as 0b with trailing garbage "1000") * - fractional hex, such as 0x1.8 (parsed as 0 with trailing garbage "x1.8") * - negative values, including -0 (fail with -ERANGE) * - floating point exponents, such as 1e3 (parsed as 1e with trailing * garbage "3") or 0x1p3 (rejected as hex with scaling suffix) * - non-finite values, such as inf or NaN (fail with -EINVAL) * * The end pointer will be returned in *end, if not NULL. If there is * no fraction, the input can be decimal or hexadecimal; if there is a * non-zero fraction, then the input must be decimal and there must be * a suffix (possibly by @default_suffix) larger than Byte, and the * fractional portion may suffer from precision loss or rounding. The * input must be positive. * * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on * other error (with *@end at @nptr). Unlike strtoull, *@result is * set to 0 on all errors, as returning UINT64_MAX on overflow is less * likely to be usable as a size. */ static int do_strtosz(const char *nptr, const char **end, const char default_suffix, int64_t unit, uint64_t *result) { int retval; const char *endptr; unsigned char c; uint64_t val = 0, valf = 0; int64_t mul; /* Parse integral portion as decimal. */ retval = parse_uint(nptr, &endptr, 10, &val); if (retval == -ERANGE || !nptr) { goto out; } if (retval == 0 && val == 0 && (*endptr == 'x' || *endptr == 'X')) { /* Input looks like hex; reparse, and insist on no fraction or suffix. */ retval = qemu_strtou64(nptr, &endptr, 16, &val); if (retval) { goto out; } if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) { endptr = nptr; retval = -EINVAL; goto out; } } else if (*endptr == '.' || (endptr == nptr && strchr(nptr, '.'))) { /* * Input looks like a fraction. Make sure even 1.k works * without fractional digits. strtod tries to treat 'e' as an * exponent, but we want to treat it as a scaling suffix; * doing this requires modifying a copy of the fraction. */ double fraction = 0.0; if (retval == 0 && *endptr == '.' && !isdigit(endptr[1])) { /* If we got here, we parsed at least one digit already. */ endptr++; } else { char *e; const char *tail; g_autofree char *copy = g_strdup(endptr); e = strchr(copy, 'e'); if (e) { *e = '\0'; } e = strchr(copy, 'E'); if (e) { *e = '\0'; } /* * If this is a floating point, we are guaranteed that '.' * appears before any possible digits in copy. If it is * not a floating point, strtod will fail. Either way, * there is now no exponent in copy, so if it parses, we * know 0.0 <= abs(result) <= 1.0 (after rounding), and * ERANGE is only possible on underflow which is okay. */ retval = qemu_strtod_finite(copy, &tail, &fraction); endptr += tail - copy; if (signbit(fraction)) { retval = -ERANGE; goto out; } } /* Extract into a 64-bit fixed-point fraction. */ if (fraction == 1.0) { if (val == UINT64_MAX) { retval = -ERANGE; goto out; } val++; } else if (retval == -ERANGE) { /* See comments above about underflow */ valf = 1; retval = 0; } else { /* We want non-zero valf for any non-zero fraction */ valf = (uint64_t)(fraction * 0x1p64); if (valf == 0 && fraction > 0.0) { valf = 1; } } } if (retval) { goto out; } c = *endptr; mul = suffix_mul(c, unit); if (mul > 0) { endptr++; } else { mul = suffix_mul(default_suffix, unit); assert(mul > 0); } if (mul == 1) { /* When a fraction is present, a scale is required. */ if (valf != 0) { endptr = nptr; retval = -EINVAL; goto out; } } else { uint64_t valh, tmp; /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ mulu64(&val, &valh, val, mul); mulu64(&valf, &tmp, valf, mul); val += tmp; valh += val < tmp; /* Round 0.5 upward. */ tmp = valf >> 63; val += tmp; valh += val < tmp; /* Report overflow. */ if (valh != 0) { retval = -ERANGE; goto out; } } retval = 0; out: if (end) { *end = endptr; } else if (nptr && *endptr) { retval = -EINVAL; } if (retval == 0) { *result = val; } else { *result = 0; if (end && retval == -EINVAL) { *end = nptr; } } return retval; } int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) { return do_strtosz(nptr, end, 'B', 1024, result); } int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) { return do_strtosz(nptr, end, 'M', 1024, result); } int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) { return do_strtosz(nptr, end, 'B', 1000, result); } /** * Helper function for error checking after strtol() and the like */ static int check_strtox_error(const char *nptr, char *ep, const char **endptr, bool check_zero, int libc_errno) { assert(ep >= nptr); /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ if (check_zero && ep == nptr && libc_errno == 0) { char *tmp; errno = 0; if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && (*tmp == 'x' || *tmp == 'X')) { ep = tmp; } } if (endptr) { *endptr = ep; } /* Turn "no conversion" into an error */ if (libc_errno == 0 && ep == nptr) { return -EINVAL; } /* Fail when we're expected to consume the string, but didn't */ if (!endptr && *ep) { return -EINVAL; } return -libc_errno; } /** * Convert string @nptr to an integer, and store it in @result. * * This is a wrapper around strtol() that is harder to misuse. * Semantics of @nptr, @endptr, @base match strtol() with differences * noted below. * * @nptr may be null, and no conversion is performed then. * * If no conversion is performed, store @nptr in *@endptr, 0 in * @result, and return -EINVAL. * * If @endptr is null, and the string isn't fully converted, return * -EINVAL with @result set to the parsed value. This is the case * when the pointer that would be stored in a non-null @endptr points * to a character other than '\0'. * * If the conversion overflows @result, store INT_MAX in @result, * and return -ERANGE. * * If the conversion underflows @result, store INT_MIN in @result, * and return -ERANGE. * * Else store the converted value in @result, and return zero. * * This matches the behavior of strtol() on 32-bit platforms, even on * platforms where long is 64-bits. */ int qemu_strtoi(const char *nptr, const char **endptr, int base, int *result) { char *ep; long long lresult; assert((unsigned) base <= 36 && base != 1); if (!nptr) { *result = 0; if (endptr) { *endptr = nptr; } return -EINVAL; } errno = 0; lresult = strtoll(nptr, &ep, base); if (lresult < INT_MIN) { *result = INT_MIN; errno = ERANGE; } else if (lresult > INT_MAX) { *result = INT_MAX; errno = ERANGE; } else { *result = lresult; } return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); } /** * Convert string @nptr to an unsigned integer, and store it in @result. * * This is a wrapper around strtoul() that is harder to misuse. * Semantics of @nptr, @endptr, @base match strtoul() with differences * noted below. * * @nptr may be null, and no conversion is performed then. * * If no conversion is performed, store @nptr in *@endptr, 0 in * @result, and return -EINVAL. * * If @endptr is null, and the string isn't fully converted, return * -EINVAL with @result set to the parsed value. This is the case * when the pointer that would be stored in a non-null @endptr points * to a character other than '\0'. * * If the conversion overflows @result, store UINT_MAX in @result, * and return -ERANGE. * * Else store the converted value in @result, and return zero. * * Note that a number with a leading minus sign gets converted without * the minus sign, checked for overflow (see above), then negated (in * @result's type). This matches the behavior of strtoul() on 32-bit * platforms, even on platforms where long is 64-bits. */ int qemu_strtoui(const char *nptr, const char **endptr, int base, unsigned int *result) { char *ep; unsigned long long lresult; bool neg; assert((unsigned) base <= 36 && base != 1); if (!nptr) { *result = 0; if (endptr) { *endptr = nptr; } return -EINVAL; } errno = 0; lresult = strtoull(nptr, &ep, base); /* Windows returns 1 for negative out-of-range values. */ if (errno == ERANGE) { *result = -1; } else { /* * Note that platforms with 32-bit strtoul only accept input * in the range [-4294967295, 4294967295]; but we used 64-bit * strtoull which wraps -18446744073709551615 to 1 instead of * declaring overflow. So we must check if '-' was parsed, * and if so, undo the negation before doing our bounds check. */ neg = memchr(nptr, '-', ep - nptr) != NULL; if (neg) { lresult = -lresult; } if (lresult > UINT_MAX) { *result = UINT_MAX; errno = ERANGE; } else { *result = neg ? -lresult : lresult; } } return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); } /** * Convert string @nptr to a long integer, and store it in @result. * * This is a wrapper around strtol() that is harder to misuse. * Semantics of @nptr, @endptr, @base match strtol() with differences * noted below. * * @nptr may be null, and no conversion is performed then. * * If no conversion is performed, store @nptr in *@endptr, 0 in * @result, and return -EINVAL. * * If @endptr is null, and the string isn't fully converted, return * -EINVAL with @result set to the parsed value. This is the case * when the pointer that would be stored in a non-null @endptr points * to a character other than '\0'. * * If the conversion overflows @result, store LONG_MAX in @result, * and return -ERANGE. * * If the conversion underflows @result, store LONG_MIN in @result, * and return -ERANGE. * * Else store the converted value in @result, and return zero. */ int qemu_strtol(const char *nptr, const char **endptr, int base, long *result) { char *ep; assert((unsigned) base <= 36 && base != 1); if (!nptr) { *result = 0; if (endptr) { *endptr = nptr; } return -EINVAL; } errno = 0; *result = strtol(nptr, &ep, base); return check_strtox_error(nptr, ep, endptr, *result == 0, errno); } /** * Convert string @nptr to an unsigned long, and store it in @result. * * This is a wrapper around strtoul() that is harder to misuse. * Semantics of @nptr, @endptr, @base match strtoul() with differences * noted below. * * @nptr may be null, and no conversion is performed then. * * If no conversion is performed, store @nptr in *@endptr, 0 in * @result, and return -EINVAL. * * If @endptr is null, and the string isn't fully converted, return * -EINVAL with @result set to the parsed value. This is the case * when the pointer that would be stored in a non-null @endptr points * to a character other than '\0'. * * If the conversion overflows @result, store ULONG_MAX in @result, * and return -ERANGE. * * Else store the converted value in @result, and return zero. * * Note that a number with a leading minus sign gets converted without * the minus sign, checked for overflow (see above), then negated (in * @result's type). This is exactly how strtoul() works. */ int qemu_strtoul(const char *nptr, const char **endptr, int base, unsigned long *result) { char *ep; assert((unsigned) base <= 36 && base != 1); if (!nptr) { *result = 0; if (endptr) { *endptr = nptr; } return -EINVAL; } errno = 0; *result = strtoul(nptr, &ep, base); /* Windows returns 1 for negative out-of-range values. */ if (errno == ERANGE) { *result = -1; } return check_strtox_error(nptr, ep, endptr, *result == 0, errno); } /** * Convert string @nptr to an int64_t. * * Works like qemu_strtol(), except it stores INT64_MAX on overflow, * and INT64_MIN on underflow. */ int qemu_strtoi64(const char *nptr, const char **endptr, int base, int64_t *result) { char *ep; assert((unsigned) base <= 36 && base != 1); if (!nptr) { *result = 0; if (endptr) { *endptr = nptr; } return -EINVAL; } /* This assumes int64_t is long long TODO relax */ QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); errno = 0; *result = strtoll(nptr, &ep, base); return check_strtox_error(nptr, ep, endptr, *result == 0, errno); } /** * Convert string @nptr to an uint64_t. * * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. * (If you want to prohibit negative numbers that wrap around to * positive, use parse_uint()). */ int qemu_strtou64(const char *nptr, const char **endptr, int base, uint64_t *result) { char *ep; assert((unsigned) base <= 36 && base != 1); if (!nptr) { *result = 0; if (endptr) { *endptr = nptr; } return -EINVAL; } /* This assumes uint64_t is unsigned long long TODO relax */ QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); errno = 0; *result = strtoull(nptr, &ep, base); /* Windows returns 1 for negative out-of-range values. */ if (errno == ERANGE) { *result = -1; } return check_strtox_error(nptr, ep, endptr, *result == 0, errno); } /** * Convert string @nptr to a double. * * This is a wrapper around strtod() that is harder to misuse. * Semantics of @nptr and @endptr match strtod() with differences * noted below. * * @nptr may be null, and no conversion is performed then. * * If no conversion is performed, store @nptr in *@endptr, +0.0 in * @result, and return -EINVAL. * * If @endptr is null, and the string isn't fully converted, return * -EINVAL with @result set to the parsed value. This is the case * when the pointer that would be stored in a non-null @endptr points * to a character other than '\0'. * * If the conversion overflows, store +/-HUGE_VAL in @result, depending * on the sign, and return -ERANGE. * * If the conversion underflows, store +/-0.0 in @result, depending on the * sign, and return -ERANGE. * * Else store the converted value in @result, and return zero. */ int qemu_strtod(const char *nptr, const char **endptr, double *result) { char *ep; if (!nptr) { *result = 0.0; if (endptr) { *endptr = nptr; } return -EINVAL; } errno = 0; *result = strtod(nptr, &ep); return check_strtox_error(nptr, ep, endptr, false, errno); } /** * Convert string @nptr to a finite double. * * Works like qemu_strtod(), except that "NaN", "inf", and strings * that cause ERANGE overflow errors are rejected with -EINVAL as if * no conversion is performed, storing 0.0 into @result regardless of * any sign. -ERANGE failures for underflow still preserve the parsed * sign. */ int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) { const char *tmp; int ret; ret = qemu_strtod(nptr, &tmp, result); if (!isfinite(*result)) { if (endptr) { *endptr = nptr; } *result = 0.0; ret = -EINVAL; } else if (endptr) { *endptr = tmp; } else if (*tmp) { ret = -EINVAL; } return ret; } /** * Searches for the first occurrence of 'c' in 's', and returns a pointer * to the trailing null byte if none was found. */ #ifndef HAVE_STRCHRNUL const char *qemu_strchrnul(const char *s, int c) { const char *e = strchr(s, c); if (!e) { e = s + strlen(s); } return e; } #endif /** * parse_uint: * * @s: String to parse * @endptr: Destination for pointer to first character not consumed * @base: integer base, between 2 and 36 inclusive, or 0 * @value: Destination for parsed integer value * * Parse unsigned integer * * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. * * If @s is null, or @s doesn't start with an integer in the syntax * above, set *@value to 0, *@endptr to @s, and return -EINVAL. * * Set *@endptr to point right beyond the parsed integer (even if the integer * overflows or is negative, all digits will be parsed and *@endptr will * point right beyond them). If @endptr is %NULL, any trailing character * instead causes a result of -EINVAL with *@value of 0. * * If the integer is negative, set *@value to 0, and return -ERANGE. * (If you want to allow negative numbers that wrap around within * bounds, use qemu_strtou64()). * * If the integer overflows unsigned long long, set *@value to * ULLONG_MAX, and return -ERANGE. * * Else, set *@value to the parsed integer, and return 0. */ int parse_uint(const char *s, const char **endptr, int base, uint64_t *value) { int r = 0; char *endp = (char *)s; unsigned long long val = 0; assert((unsigned) base <= 36 && base != 1); if (!s) { r = -EINVAL; goto out; } errno = 0; val = strtoull(s, &endp, base); if (errno) { r = -errno; goto out; } if (endp == s) { r = -EINVAL; goto out; } /* make sure we reject negative numbers: */ while (qemu_isspace(*s)) { s++; } if (*s == '-') { val = 0; r = -ERANGE; goto out; } out: *value = val; if (endptr) { *endptr = endp; } else if (s && *endp) { r = -EINVAL; *value = 0; } return r; } /** * parse_uint_full: * * @s: String to parse * @base: integer base, between 2 and 36 inclusive, or 0 * @value: Destination for parsed integer value * * Parse unsigned integer from entire string, rejecting any trailing slop. * * Shorthand for parse_uint(s, NULL, base, value). */ int parse_uint_full(const char *s, int base, uint64_t *value) { return parse_uint(s, NULL, base, value); } int qemu_parse_fd(const char *param) { long fd; char *endptr; errno = 0; fd = strtol(param, &endptr, 10); if (param == endptr /* no conversion performed */ || errno != 0 /* not representable as long; possibly others */ || *endptr != '\0' /* final string not empty */ || fd < 0 /* invalid as file descriptor */ || fd > INT_MAX /* not representable as int */) { return -1; } return fd; } /* * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) * Input is limited to 14-bit numbers */ int uleb128_encode_small(uint8_t *out, uint32_t n) { g_assert(n <= 0x3fff); if (n < 0x80) { *out = n; return 1; } else { *out++ = (n & 0x7f) | 0x80; *out = n >> 7; return 2; } } int uleb128_decode_small(const uint8_t *in, uint32_t *n) { if (!(*in & 0x80)) { *n = *in; return 1; } else { *n = *in++ & 0x7f; /* we exceed 14 bit number */ if (*in & 0x80) { return -1; } *n |= *in << 7; return 2; } } /* * helper to parse debug environment variables */ int parse_debug_env(const char *name, int max, int initial) { char *debug_env = getenv(name); char *inv = NULL; long debug; if (!debug_env) { return initial; } errno = 0; debug = strtol(debug_env, &inv, 10); if (inv == debug_env) { return initial; } if (debug < 0 || debug > max || errno != 0) { warn_report("%s not in [0, %d]", name, max); return initial; } return debug; } const char *si_prefix(unsigned int exp10) { static const char *prefixes[] = { "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E" }; exp10 += 18; assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes)); return prefixes[exp10 / 3]; } const char *iec_binary_prefix(unsigned int exp2) { static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes)); return prefixes[exp2 / 10]; } /* * Return human readable string for size @val. * @val can be anything that uint64_t allows (no more than "16 EiB"). * Use IEC binary units like KiB, MiB, and so forth. * Caller is responsible for passing it to g_free(). */ char *size_to_str(uint64_t val) { uint64_t div; int i; /* * The exponent (returned in i) minus one gives us * floor(log2(val * 1024 / 1000). The correction makes us * switch to the higher power when the integer part is >= 1000. * (see e41b509d68afb1f for more info) */ frexp(val / (1000.0 / 1024.0), &i); i = (i - 1) / 10 * 10; div = 1ULL << i; return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i)); } char *freq_to_str(uint64_t freq_hz) { double freq = freq_hz; size_t exp10 = 0; while (freq >= 1000.0) { freq /= 1000.0; exp10 += 3; } return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10)); } int qemu_pstrcmp0(const char **str1, const char **str2) { return g_strcmp0(*str1, *str2); } static inline bool starts_with_prefix(const char *dir) { size_t prefix_len = strlen(CONFIG_PREFIX); /* * dir[prefix_len] is only accessed if the length of dir is * >= prefix_len, so no out of bounds access is possible. */ #pragma GCC diagnostic push #if !defined(__clang__) || __has_warning("-Warray-bounds=") #pragma GCC diagnostic ignored "-Warray-bounds=" #endif return !memcmp(dir, CONFIG_PREFIX, prefix_len) && (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); #pragma GCC diagnostic pop } /* Return the next path component in dir, and store its length in *p_len. */ static inline const char *next_component(const char *dir, int *p_len) { int len; while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { dir++; } len = 0; while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { len++; } *p_len = len; return dir; } static const char *exec_dir; void qemu_init_exec_dir(const char *argv0) { #ifdef G_OS_WIN32 char *p; char buf[MAX_PATH]; DWORD len; if (exec_dir) { return; } len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); if (len == 0) { return; } buf[len] = 0; p = buf + len - 1; while (p != buf && *p != '\\') { p--; } *p = 0; if (access(buf, R_OK) == 0) { exec_dir = g_strdup(buf); } else { exec_dir = CONFIG_BINDIR; } #else char *p = NULL; char buf[PATH_MAX]; if (exec_dir) { return; } #if defined(__linux__) { int len; len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); if (len > 0) { buf[len] = 0; p = buf; } } #elif defined(__FreeBSD__) \ || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME)) { #if defined(__FreeBSD__) static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; #else static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; #endif size_t len = sizeof(buf) - 1; *buf = '\0'; if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) && *buf) { buf[sizeof(buf) - 1] = '\0'; p = buf; } } #elif defined(__APPLE__) { char fpath[PATH_MAX]; uint32_t len = sizeof(fpath); if (_NSGetExecutablePath(fpath, &len) == 0) { p = realpath(fpath, buf); if (!p) { return; } } } #elif defined(__HAIKU__) { image_info ii; int32_t c = 0; *buf = '\0'; while (get_next_image_info(0, &c, &ii) == B_OK) { if (ii.type == B_APP_IMAGE) { strncpy(buf, ii.name, sizeof(buf)); buf[sizeof(buf) - 1] = 0; p = buf; break; } } } #endif /* If we don't have any way of figuring out the actual executable location then try argv[0]. */ if (!p && argv0) { p = realpath(argv0, buf); } if (p) { exec_dir = g_path_get_dirname(p); } else { exec_dir = CONFIG_BINDIR; } #endif } char *get_relocated_path(const char *dir) { size_t prefix_len = strlen(CONFIG_PREFIX); const char *bindir = CONFIG_BINDIR; GString *result; int len_dir, len_bindir; /* Fail if qemu_init_exec_dir was not called. */ assert(exec_dir[0]); result = g_string_new(exec_dir); g_string_append(result, "/qemu-bundle"); if (access(result->str, R_OK) == 0) { #ifdef G_OS_WIN32 const char *src = dir; size_t size = mbsrtowcs(NULL, &src, 0, &(mbstate_t){0}) + 1; PWSTR wdir = g_new(WCHAR, size); mbsrtowcs(wdir, &src, size, &(mbstate_t){0}); PCWSTR wdir_skipped_root; if (PathCchSkipRoot(wdir, &wdir_skipped_root) == S_OK) { size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0}); char *cursor = result->str + result->len; g_string_set_size(result, result->len + size); wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0}); } else { g_string_append(result, dir); } g_free(wdir); #else g_string_append(result, dir); #endif goto out; } if (IS_ENABLED(CONFIG_RELOCATABLE) && starts_with_prefix(dir) && starts_with_prefix(bindir)) { g_string_assign(result, exec_dir); /* Advance over common components. */ len_dir = len_bindir = prefix_len; do { dir += len_dir; bindir += len_bindir; dir = next_component(dir, &len_dir); bindir = next_component(bindir, &len_bindir); } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); /* Ascend from bindir to the common prefix with dir. */ while (len_bindir) { bindir += len_bindir; g_string_append(result, "/.."); bindir = next_component(bindir, &len_bindir); } if (*dir) { assert(G_IS_DIR_SEPARATOR(dir[-1])); g_string_append(result, dir - 1); } goto out; } g_string_assign(result, dir); out: return g_string_free(result, false); }