/* * ARM IoTKit system control element * * Copyright (c) 2018 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* * This is a model of the "system control element" which is part of the * Arm IoTKit and documented in * https://developer.arm.com/documentation/ecm0601256/latest * Specifically, it implements the "system control register" blocks. */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qemu/module.h" #include "sysemu/runstate.h" #include "trace.h" #include "qapi/error.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/registerfields.h" #include "hw/misc/iotkit-sysctl.h" #include "hw/qdev-properties.h" #include "hw/arm/armsse-version.h" #include "target/arm/arm-powerctl.h" REG32(SECDBGSTAT, 0x0) REG32(SECDBGSET, 0x4) REG32(SECDBGCLR, 0x8) REG32(SCSECCTRL, 0xc) REG32(FCLK_DIV, 0x10) REG32(SYSCLK_DIV, 0x14) REG32(CLOCK_FORCE, 0x18) REG32(RESET_SYNDROME, 0x100) REG32(RESET_MASK, 0x104) REG32(SWRESET, 0x108) FIELD(SWRESET, SWRESETREQ, 9, 1) REG32(GRETREG, 0x10c) REG32(INITSVTOR0, 0x110) FIELD(INITSVTOR0, LOCK, 0, 1) FIELD(INITSVTOR0, VTOR, 7, 25) REG32(INITSVTOR1, 0x114) REG32(CPUWAIT, 0x118) REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */ REG32(WICCTRL, 0x120) REG32(EWCTRL, 0x124) REG32(PWRCTRL, 0x1fc) FIELD(PWRCTRL, PPU_ACCESS_UNLOCK, 0, 1) FIELD(PWRCTRL, PPU_ACCESS_FILTER, 1, 1) REG32(PDCM_PD_SYS_SENSE, 0x200) REG32(PDCM_PD_CPU0_SENSE, 0x204) REG32(PDCM_PD_SRAM0_SENSE, 0x20c) REG32(PDCM_PD_SRAM1_SENSE, 0x210) REG32(PDCM_PD_SRAM2_SENSE, 0x214) /* PDCM_PD_VMR0_SENSE on SSE300 */ REG32(PDCM_PD_SRAM3_SENSE, 0x218) /* PDCM_PD_VMR1_SENSE on SSE300 */ REG32(PID4, 0xfd0) REG32(PID5, 0xfd4) REG32(PID6, 0xfd8) REG32(PID7, 0xfdc) REG32(PID0, 0xfe0) REG32(PID1, 0xfe4) REG32(PID2, 0xfe8) REG32(PID3, 0xfec) REG32(CID0, 0xff0) REG32(CID1, 0xff4) REG32(CID2, 0xff8) REG32(CID3, 0xffc) /* PID/CID values */ static const int iotkit_sysctl_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; /* Also used by the SSE300 */ static const int sse200_sysctl_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0x54, 0xb8, 0x1b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; /* * Set the initial secure vector table offset address for the core. * This will take effect when the CPU next resets. */ static void set_init_vtor(uint64_t cpuid, uint32_t vtor) { Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid)); if (cpuobj) { if (object_property_find(cpuobj, "init-svtor")) { object_property_set_uint(cpuobj, "init-svtor", vtor, &error_abort); } } } static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset, unsigned size) { IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque); uint64_t r; switch (offset) { case A_SECDBGSTAT: r = s->secure_debug; break; case A_SCSECCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: r = s->scsecctrl; break; default: g_assert_not_reached(); } break; case A_FCLK_DIV: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: r = s->fclk_div; break; default: g_assert_not_reached(); } break; case A_SYSCLK_DIV: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: r = s->sysclk_div; break; default: g_assert_not_reached(); } break; case A_CLOCK_FORCE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: r = s->clock_force; break; default: g_assert_not_reached(); } break; case A_RESET_SYNDROME: r = s->reset_syndrome; break; case A_RESET_MASK: r = s->reset_mask; break; case A_GRETREG: r = s->gretreg; break; case A_INITSVTOR0: r = s->initsvtor0; break; case A_INITSVTOR1: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: r = s->initsvtor1; break; case ARMSSE_SSE300: goto bad_offset; default: g_assert_not_reached(); } break; case A_CPUWAIT: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: r = s->cpuwait; break; case ARMSSE_SSE300: /* In SSE300 this is reserved (for INITSVTOR2) */ goto bad_offset; default: g_assert_not_reached(); } break; case A_NMI_ENABLE: switch (s->sse_version) { case ARMSSE_IOTKIT: /* In IoTKit this is named BUSWAIT but marked reserved, R/O, zero */ r = 0; break; case ARMSSE_SSE200: r = s->nmi_enable; break; case ARMSSE_SSE300: /* In SSE300 this is reserved (for INITSVTOR3) */ goto bad_offset; default: g_assert_not_reached(); } break; case A_WICCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: r = s->wicctrl; break; case ARMSSE_SSE300: /* In SSE300 this offset is CPUWAIT */ r = s->cpuwait; break; default: g_assert_not_reached(); } break; case A_EWCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: r = s->ewctrl; break; case ARMSSE_SSE300: /* In SSE300 this offset is NMI_ENABLE */ r = s->nmi_enable; break; default: g_assert_not_reached(); } break; case A_PWRCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: goto bad_offset; case ARMSSE_SSE300: r = s->pwrctrl; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_SYS_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: r = s->pdcm_pd_sys_sense; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_CPU0_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: goto bad_offset; case ARMSSE_SSE300: r = s->pdcm_pd_cpu0_sense; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM0_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: r = s->pdcm_pd_sram0_sense; break; case ARMSSE_SSE300: goto bad_offset; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM1_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: r = s->pdcm_pd_sram1_sense; break; case ARMSSE_SSE300: goto bad_offset; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM2_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: r = s->pdcm_pd_sram2_sense; break; case ARMSSE_SSE300: r = s->pdcm_pd_vmr0_sense; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM3_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: r = s->pdcm_pd_sram3_sense; break; case ARMSSE_SSE300: r = s->pdcm_pd_vmr1_sense; break; default: g_assert_not_reached(); } break; case A_PID4 ... A_CID3: switch (s->sse_version) { case ARMSSE_IOTKIT: r = iotkit_sysctl_id[(offset - A_PID4) / 4]; break; case ARMSSE_SSE200: case ARMSSE_SSE300: r = sse200_sysctl_id[(offset - A_PID4) / 4]; break; default: g_assert_not_reached(); } break; case A_SECDBGSET: case A_SECDBGCLR: case A_SWRESET: qemu_log_mask(LOG_GUEST_ERROR, "IoTKit SysCtl read: read of WO offset %x\n", (int)offset); r = 0; break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "IoTKit SysCtl read: bad offset %x\n", (int)offset); r = 0; break; } trace_iotkit_sysctl_read(offset, r, size); return r; } static void cpuwait_write(IoTKitSysCtl *s, uint32_t value) { int num_cpus = (s->sse_version == ARMSSE_SSE300) ? 1 : 2; int i; for (i = 0; i < num_cpus; i++) { uint32_t mask = 1 << i; if ((s->cpuwait & mask) && !(value & mask)) { /* Powering up CPU 0 */ arm_set_cpu_on_and_reset(i); } } s->cpuwait = value; } static void iotkit_sysctl_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque); trace_iotkit_sysctl_write(offset, value, size); /* * Most of the state here has to do with control of reset and * similar kinds of power up -- for instance the guest can ask * what the reason for the last reset was, or forbid reset for * some causes (like the non-secure watchdog). Most of this is * not relevant to QEMU, which doesn't really model anything other * than a full power-on reset. * We just model the registers as reads-as-written. */ switch (offset) { case A_RESET_SYNDROME: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_SYNDROME unimplemented\n"); s->reset_syndrome = value; break; case A_RESET_MASK: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n"); s->reset_mask = value; break; case A_GRETREG: /* * General retention register, which is only reset by a power-on * reset. Technically this implementation is complete, since * QEMU only supports power-on resets... */ s->gretreg = value; break; case A_INITSVTOR0: switch (s->sse_version) { case ARMSSE_SSE300: /* SSE300 has a LOCK bit which prevents further writes when set */ if (s->initsvtor0 & R_INITSVTOR0_LOCK_MASK) { qemu_log_mask(LOG_GUEST_ERROR, "IoTKit INITSVTOR0 write when register locked\n"); break; } s->initsvtor0 = value; set_init_vtor(0, s->initsvtor0 & R_INITSVTOR0_VTOR_MASK); break; case ARMSSE_IOTKIT: case ARMSSE_SSE200: s->initsvtor0 = value; set_init_vtor(0, s->initsvtor0); break; default: g_assert_not_reached(); } break; case A_CPUWAIT: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: cpuwait_write(s, value); break; case ARMSSE_SSE300: /* In SSE300 this is reserved (for INITSVTOR2) */ goto bad_offset; default: g_assert_not_reached(); } break; case A_WICCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n"); s->wicctrl = value; break; case ARMSSE_SSE300: /* In SSE300 this offset is CPUWAIT */ cpuwait_write(s, value); break; default: g_assert_not_reached(); } break; case A_SECDBGSET: /* write-1-to-set */ qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n"); s->secure_debug |= value; break; case A_SECDBGCLR: /* write-1-to-clear */ s->secure_debug &= ~value; break; case A_SWRESET: /* One w/o bit to request a reset; all other bits reserved */ if (value & R_SWRESET_SWRESETREQ_MASK) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; case A_SCSECCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n"); s->scsecctrl = value; break; default: g_assert_not_reached(); } break; case A_FCLK_DIV: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n"); s->fclk_div = value; break; default: g_assert_not_reached(); } break; case A_SYSCLK_DIV: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n"); s->sysclk_div = value; break; default: g_assert_not_reached(); } break; case A_CLOCK_FORCE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n"); s->clock_force = value; break; default: g_assert_not_reached(); } break; case A_INITSVTOR1: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: s->initsvtor1 = value; set_init_vtor(1, s->initsvtor1); break; case ARMSSE_SSE300: goto bad_offset; default: g_assert_not_reached(); } break; case A_EWCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n"); s->ewctrl = value; break; case ARMSSE_SSE300: /* In SSE300 this offset is NMI_ENABLE */ qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n"); s->nmi_enable = value; break; default: g_assert_not_reached(); } break; case A_PWRCTRL: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: goto bad_offset; case ARMSSE_SSE300: if (!(s->pwrctrl & R_PWRCTRL_PPU_ACCESS_UNLOCK_MASK)) { qemu_log_mask(LOG_GUEST_ERROR, "IoTKit PWRCTRL write when register locked\n"); break; } s->pwrctrl = value; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_SYS_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n"); s->pdcm_pd_sys_sense = value; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_CPU0_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: case ARMSSE_SSE200: goto bad_offset; case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_CPU0_SENSE unimplemented\n"); s->pdcm_pd_cpu0_sense = value; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM0_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n"); s->pdcm_pd_sram0_sense = value; break; case ARMSSE_SSE300: goto bad_offset; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM1_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n"); s->pdcm_pd_sram1_sense = value; break; case ARMSSE_SSE300: goto bad_offset; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM2_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n"); s->pdcm_pd_sram2_sense = value; break; case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_VMR0_SENSE unimplemented\n"); s->pdcm_pd_vmr0_sense = value; break; default: g_assert_not_reached(); } break; case A_PDCM_PD_SRAM3_SENSE: switch (s->sse_version) { case ARMSSE_IOTKIT: goto bad_offset; case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n"); s->pdcm_pd_sram3_sense = value; break; case ARMSSE_SSE300: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl PDCM_PD_VMR1_SENSE unimplemented\n"); s->pdcm_pd_vmr1_sense = value; break; default: g_assert_not_reached(); } break; case A_NMI_ENABLE: /* In IoTKit this is BUSWAIT: reserved, R/O, zero */ switch (s->sse_version) { case ARMSSE_IOTKIT: goto ro_offset; case ARMSSE_SSE200: qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n"); s->nmi_enable = value; break; case ARMSSE_SSE300: /* In SSE300 this is reserved (for INITSVTOR3) */ goto bad_offset; default: g_assert_not_reached(); } break; case A_SECDBGSTAT: case A_PID4 ... A_CID3: ro_offset: qemu_log_mask(LOG_GUEST_ERROR, "IoTKit SysCtl write: write of RO offset %x\n", (int)offset); break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "IoTKit SysCtl write: bad offset %x\n", (int)offset); break; } } static const MemoryRegionOps iotkit_sysctl_ops = { .read = iotkit_sysctl_read, .write = iotkit_sysctl_write, .endianness = DEVICE_LITTLE_ENDIAN, /* byte/halfword accesses are just zero-padded on reads and writes */ .impl.min_access_size = 4, .impl.max_access_size = 4, .valid.min_access_size = 1, .valid.max_access_size = 4, }; static void iotkit_sysctl_reset(DeviceState *dev) { IoTKitSysCtl *s = IOTKIT_SYSCTL(dev); trace_iotkit_sysctl_reset(); s->secure_debug = 0; s->reset_syndrome = 1; s->reset_mask = 0; s->gretreg = 0; s->initsvtor0 = s->initsvtor0_rst; s->initsvtor1 = s->initsvtor1_rst; s->cpuwait = s->cpuwait_rst; s->wicctrl = 0; s->scsecctrl = 0; s->fclk_div = 0; s->sysclk_div = 0; s->clock_force = 0; s->nmi_enable = 0; s->ewctrl = 0; s->pwrctrl = 0x3; s->pdcm_pd_sys_sense = 0x7f; s->pdcm_pd_sram0_sense = 0; s->pdcm_pd_sram1_sense = 0; s->pdcm_pd_sram2_sense = 0; s->pdcm_pd_sram3_sense = 0; s->pdcm_pd_cpu0_sense = 0; s->pdcm_pd_vmr0_sense = 0; s->pdcm_pd_vmr1_sense = 0; } static void iotkit_sysctl_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); IoTKitSysCtl *s = IOTKIT_SYSCTL(obj); memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops, s, "iotkit-sysctl", 0x1000); sysbus_init_mmio(sbd, &s->iomem); } static void iotkit_sysctl_realize(DeviceState *dev, Error **errp) { IoTKitSysCtl *s = IOTKIT_SYSCTL(dev); if (!armsse_version_valid(s->sse_version)) { error_setg(errp, "invalid sse-version value %d", s->sse_version); return; } } static bool sse300_needed(void *opaque) { IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque); return s->sse_version == ARMSSE_SSE300; } static const VMStateDescription iotkit_sysctl_sse300_vmstate = { .name = "iotkit-sysctl/sse-300", .version_id = 1, .minimum_version_id = 1, .needed = sse300_needed, .fields = (const VMStateField[]) { VMSTATE_UINT32(pwrctrl, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_cpu0_sense, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_vmr0_sense, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_vmr1_sense, IoTKitSysCtl), VMSTATE_END_OF_LIST() } }; static bool sse200_needed(void *opaque) { IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque); return s->sse_version != ARMSSE_IOTKIT; } static const VMStateDescription iotkit_sysctl_sse200_vmstate = { .name = "iotkit-sysctl/sse-200", .version_id = 1, .minimum_version_id = 1, .needed = sse200_needed, .fields = (const VMStateField[]) { VMSTATE_UINT32(scsecctrl, IoTKitSysCtl), VMSTATE_UINT32(fclk_div, IoTKitSysCtl), VMSTATE_UINT32(sysclk_div, IoTKitSysCtl), VMSTATE_UINT32(clock_force, IoTKitSysCtl), VMSTATE_UINT32(initsvtor1, IoTKitSysCtl), VMSTATE_UINT32(nmi_enable, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl), VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl), VMSTATE_END_OF_LIST() } }; static const VMStateDescription iotkit_sysctl_vmstate = { .name = "iotkit-sysctl", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(secure_debug, IoTKitSysCtl), VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl), VMSTATE_UINT32(reset_mask, IoTKitSysCtl), VMSTATE_UINT32(gretreg, IoTKitSysCtl), VMSTATE_UINT32(initsvtor0, IoTKitSysCtl), VMSTATE_UINT32(cpuwait, IoTKitSysCtl), VMSTATE_UINT32(wicctrl, IoTKitSysCtl), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * const []) { &iotkit_sysctl_sse200_vmstate, &iotkit_sysctl_sse300_vmstate, NULL } }; static Property iotkit_sysctl_props[] = { DEFINE_PROP_UINT32("sse-version", IoTKitSysCtl, sse_version, 0), DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0), DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst, 0x10000000), DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst, 0x10000000), DEFINE_PROP_END_OF_LIST() }; static void iotkit_sysctl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &iotkit_sysctl_vmstate; device_class_set_legacy_reset(dc, iotkit_sysctl_reset); device_class_set_props(dc, iotkit_sysctl_props); dc->realize = iotkit_sysctl_realize; } static const TypeInfo iotkit_sysctl_info = { .name = TYPE_IOTKIT_SYSCTL, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IoTKitSysCtl), .instance_init = iotkit_sysctl_init, .class_init = iotkit_sysctl_class_init, }; static void iotkit_sysctl_register_types(void) { type_register_static(&iotkit_sysctl_info); } type_init(iotkit_sysctl_register_types);