/* * QEMU Crypto akcipher algorithms * * Copyright (c) 2022 Bytedance * Author: lei he * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include #include "qemu/osdep.h" #include "qemu/host-utils.h" #include "crypto/akcipher.h" #include "crypto/random.h" #include "qapi/error.h" #include "sysemu/cryptodev.h" #include "rsakey.h" typedef struct QCryptoNettleRSA { QCryptoAkCipher akcipher; struct rsa_public_key pub; struct rsa_private_key priv; QCryptoRSAPaddingAlgo padding_alg; QCryptoHashAlgo hash_alg; } QCryptoNettleRSA; static void qcrypto_nettle_rsa_free(QCryptoAkCipher *akcipher) { QCryptoNettleRSA *rsa = (QCryptoNettleRSA *)akcipher; if (!rsa) { return; } rsa_public_key_clear(&rsa->pub); rsa_private_key_clear(&rsa->priv); g_free(rsa); } static QCryptoAkCipher *qcrypto_nettle_rsa_new( const QCryptoAkCipherOptionsRSA *opt, QCryptoAkCipherKeyType type, const uint8_t *key, size_t keylen, Error **errp); QCryptoAkCipher *qcrypto_akcipher_new(const QCryptoAkCipherOptions *opts, QCryptoAkCipherKeyType type, const uint8_t *key, size_t keylen, Error **errp) { switch (opts->alg) { case QCRYPTO_AK_CIPHER_ALGO_RSA: return qcrypto_nettle_rsa_new(&opts->u.rsa, type, key, keylen, errp); default: error_setg(errp, "Unsupported algorithm: %u", opts->alg); return NULL; } return NULL; } static void qcrypto_nettle_rsa_set_akcipher_size(QCryptoAkCipher *akcipher, int key_size) { akcipher->max_plaintext_len = key_size; akcipher->max_ciphertext_len = key_size; akcipher->max_signature_len = key_size; akcipher->max_dgst_len = key_size; } static int qcrypt_nettle_parse_rsa_private_key(QCryptoNettleRSA *rsa, const uint8_t *key, size_t keylen, Error **errp) { g_autoptr(QCryptoAkCipherRSAKey) rsa_key = qcrypto_akcipher_rsakey_parse( QCRYPTO_AK_CIPHER_KEY_TYPE_PRIVATE, key, keylen, errp); if (!rsa_key) { return -1; } nettle_mpz_init_set_str_256_u(rsa->pub.n, rsa_key->n.len, rsa_key->n.data); nettle_mpz_init_set_str_256_u(rsa->pub.e, rsa_key->e.len, rsa_key->e.data); nettle_mpz_init_set_str_256_u(rsa->priv.d, rsa_key->d.len, rsa_key->d.data); nettle_mpz_init_set_str_256_u(rsa->priv.p, rsa_key->p.len, rsa_key->p.data); nettle_mpz_init_set_str_256_u(rsa->priv.q, rsa_key->q.len, rsa_key->q.data); nettle_mpz_init_set_str_256_u(rsa->priv.a, rsa_key->dp.len, rsa_key->dp.data); nettle_mpz_init_set_str_256_u(rsa->priv.b, rsa_key->dq.len, rsa_key->dq.data); nettle_mpz_init_set_str_256_u(rsa->priv.c, rsa_key->u.len, rsa_key->u.data); if (!rsa_public_key_prepare(&rsa->pub)) { error_setg(errp, "Failed to check RSA key"); return -1; } /** * Since in the kernel's unit test, the p, q, a, b, c of some * private keys is 0, only the simplest length check is done here */ if (rsa_key->p.len > 1 && rsa_key->q.len > 1 && rsa_key->dp.len > 1 && rsa_key->dq.len > 1 && rsa_key->u.len > 1) { if (!rsa_private_key_prepare(&rsa->priv)) { error_setg(errp, "Failed to check RSA key"); return -1; } } else { rsa->priv.size = rsa->pub.size; } qcrypto_nettle_rsa_set_akcipher_size( (QCryptoAkCipher *)rsa, rsa->priv.size); return 0; } static int qcrypt_nettle_parse_rsa_public_key(QCryptoNettleRSA *rsa, const uint8_t *key, size_t keylen, Error **errp) { g_autoptr(QCryptoAkCipherRSAKey) rsa_key = qcrypto_akcipher_rsakey_parse( QCRYPTO_AK_CIPHER_KEY_TYPE_PUBLIC, key, keylen, errp); if (!rsa_key) { return -1; } nettle_mpz_init_set_str_256_u(rsa->pub.n, rsa_key->n.len, rsa_key->n.data); nettle_mpz_init_set_str_256_u(rsa->pub.e, rsa_key->e.len, rsa_key->e.data); if (!rsa_public_key_prepare(&rsa->pub)) { error_setg(errp, "Failed to check RSA key"); return -1; } qcrypto_nettle_rsa_set_akcipher_size( (QCryptoAkCipher *)rsa, rsa->pub.size); return 0; } static void wrap_nettle_random_func(void *ctx, size_t len, uint8_t *out) { qcrypto_random_bytes(out, len, &error_abort); } static int qcrypto_nettle_rsa_encrypt(QCryptoAkCipher *akcipher, const void *data, size_t data_len, void *enc, size_t enc_len, Error **errp) { QCryptoNettleRSA *rsa = (QCryptoNettleRSA *)akcipher; mpz_t c; int ret = -1; if (data_len > rsa->pub.size) { error_setg(errp, "Plaintext length %zu is greater than key size: %zu", data_len, rsa->pub.size); return ret; } if (enc_len < rsa->pub.size) { error_setg(errp, "Ciphertext buffer length %zu is less than " "key size: %zu", enc_len, rsa->pub.size); return ret; } /* Nettle do not support RSA encryption without any padding */ switch (rsa->padding_alg) { case QCRYPTO_RSA_PADDING_ALGO_RAW: error_setg(errp, "RSA with raw padding is not supported"); break; case QCRYPTO_RSA_PADDING_ALGO_PKCS1: mpz_init(c); if (rsa_encrypt(&rsa->pub, NULL, wrap_nettle_random_func, data_len, (uint8_t *)data, c) != 1) { error_setg(errp, "Failed to encrypt"); } else { nettle_mpz_get_str_256(enc_len, (uint8_t *)enc, c); ret = nettle_mpz_sizeinbase_256_u(c); } mpz_clear(c); break; default: error_setg(errp, "Unknown padding"); } return ret; } static int qcrypto_nettle_rsa_decrypt(QCryptoAkCipher *akcipher, const void *enc, size_t enc_len, void *data, size_t data_len, Error **errp) { QCryptoNettleRSA *rsa = (QCryptoNettleRSA *)akcipher; mpz_t c; int ret = -1; if (enc_len > rsa->priv.size) { error_setg(errp, "Ciphertext length %zu is greater than key size: %zu", enc_len, rsa->priv.size); return ret; } switch (rsa->padding_alg) { case QCRYPTO_RSA_PADDING_ALGO_RAW: error_setg(errp, "RSA with raw padding is not supported"); break; case QCRYPTO_RSA_PADDING_ALGO_PKCS1: nettle_mpz_init_set_str_256_u(c, enc_len, enc); if (!rsa_decrypt(&rsa->priv, &data_len, (uint8_t *)data, c)) { error_setg(errp, "Failed to decrypt"); } else { ret = data_len; } mpz_clear(c); break; default: error_setg(errp, "Unknown padding algorithm: %d", rsa->padding_alg); } return ret; } static int qcrypto_nettle_rsa_sign(QCryptoAkCipher *akcipher, const void *data, size_t data_len, void *sig, size_t sig_len, Error **errp) { QCryptoNettleRSA *rsa = (QCryptoNettleRSA *)akcipher; int ret = -1, rv; mpz_t s; /** * The RSA algorithm cannot be used for signature/verification * without padding. */ if (rsa->padding_alg == QCRYPTO_RSA_PADDING_ALGO_RAW) { error_setg(errp, "Try to make signature without padding"); return ret; } if (data_len > rsa->priv.size) { error_setg(errp, "Data length %zu is greater than key size: %zu", data_len, rsa->priv.size); return ret; } if (sig_len < rsa->priv.size) { error_setg(errp, "Signature buffer length %zu is less than " "key size: %zu", sig_len, rsa->priv.size); return ret; } mpz_init(s); switch (rsa->hash_alg) { case QCRYPTO_HASH_ALGO_MD5: rv = rsa_md5_sign_digest(&rsa->priv, data, s); break; case QCRYPTO_HASH_ALGO_SHA1: rv = rsa_sha1_sign_digest(&rsa->priv, data, s); break; case QCRYPTO_HASH_ALGO_SHA256: rv = rsa_sha256_sign_digest(&rsa->priv, data, s); break; case QCRYPTO_HASH_ALGO_SHA512: rv = rsa_sha512_sign_digest(&rsa->priv, data, s); break; default: error_setg(errp, "Unknown hash algorithm: %d", rsa->hash_alg); goto cleanup; } if (rv != 1) { error_setg(errp, "Failed to make signature"); goto cleanup; } nettle_mpz_get_str_256(sig_len, (uint8_t *)sig, s); ret = nettle_mpz_sizeinbase_256_u(s); cleanup: mpz_clear(s); return ret; } static int qcrypto_nettle_rsa_verify(QCryptoAkCipher *akcipher, const void *sig, size_t sig_len, const void *data, size_t data_len, Error **errp) { QCryptoNettleRSA *rsa = (QCryptoNettleRSA *)akcipher; int ret = -1, rv; mpz_t s; /** * The RSA algorithm cannot be used for signature/verification * without padding. */ if (rsa->padding_alg == QCRYPTO_RSA_PADDING_ALGO_RAW) { error_setg(errp, "Try to verify signature without padding"); return ret; } if (data_len > rsa->pub.size) { error_setg(errp, "Data length %zu is greater than key size: %zu", data_len, rsa->pub.size); return ret; } if (sig_len < rsa->pub.size) { error_setg(errp, "Signature length %zu is greater than key size: %zu", sig_len, rsa->pub.size); return ret; } nettle_mpz_init_set_str_256_u(s, sig_len, sig); switch (rsa->hash_alg) { case QCRYPTO_HASH_ALGO_MD5: rv = rsa_md5_verify_digest(&rsa->pub, data, s); break; case QCRYPTO_HASH_ALGO_SHA1: rv = rsa_sha1_verify_digest(&rsa->pub, data, s); break; case QCRYPTO_HASH_ALGO_SHA256: rv = rsa_sha256_verify_digest(&rsa->pub, data, s); break; case QCRYPTO_HASH_ALGO_SHA512: rv = rsa_sha512_verify_digest(&rsa->pub, data, s); break; default: error_setg(errp, "Unsupported hash algorithm: %d", rsa->hash_alg); goto cleanup; } if (rv != 1) { error_setg(errp, "Failed to verify signature"); goto cleanup; } ret = 0; cleanup: mpz_clear(s); return ret; } QCryptoAkCipherDriver nettle_rsa = { .encrypt = qcrypto_nettle_rsa_encrypt, .decrypt = qcrypto_nettle_rsa_decrypt, .sign = qcrypto_nettle_rsa_sign, .verify = qcrypto_nettle_rsa_verify, .free = qcrypto_nettle_rsa_free, }; static QCryptoAkCipher *qcrypto_nettle_rsa_new( const QCryptoAkCipherOptionsRSA *opt, QCryptoAkCipherKeyType type, const uint8_t *key, size_t keylen, Error **errp) { QCryptoNettleRSA *rsa = g_new0(QCryptoNettleRSA, 1); rsa->padding_alg = opt->padding_alg; rsa->hash_alg = opt->hash_alg; rsa->akcipher.driver = &nettle_rsa; rsa_public_key_init(&rsa->pub); rsa_private_key_init(&rsa->priv); switch (type) { case QCRYPTO_AK_CIPHER_KEY_TYPE_PRIVATE: if (qcrypt_nettle_parse_rsa_private_key(rsa, key, keylen, errp) != 0) { goto error; } break; case QCRYPTO_AK_CIPHER_KEY_TYPE_PUBLIC: if (qcrypt_nettle_parse_rsa_public_key(rsa, key, keylen, errp) != 0) { goto error; } break; default: error_setg(errp, "Unknown akcipher key type %d", type); goto error; } return (QCryptoAkCipher *)rsa; error: qcrypto_nettle_rsa_free((QCryptoAkCipher *)rsa); return NULL; } bool qcrypto_akcipher_supports(QCryptoAkCipherOptions *opts) { switch (opts->alg) { case QCRYPTO_AK_CIPHER_ALGO_RSA: switch (opts->u.rsa.padding_alg) { case QCRYPTO_RSA_PADDING_ALGO_PKCS1: switch (opts->u.rsa.hash_alg) { case QCRYPTO_HASH_ALGO_MD5: case QCRYPTO_HASH_ALGO_SHA1: case QCRYPTO_HASH_ALGO_SHA256: case QCRYPTO_HASH_ALGO_SHA512: return true; default: return false; } case QCRYPTO_RSA_PADDING_ALGO_RAW: default: return false; } break; default: return false; } }