if firmware and QEMU negotiated CPU hotunplug support, generate
_EJ0 method so that it will mark CPU for removal by firmware and
pass control to it by triggering SMI.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20201207140739.3829993-6-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Adds bit #4 to status/control field of CPU hotplug MMIO interface.
New bit will be used OSPM to mark CPUs as pending for removal by firmware,
when it calls _EJ0 method on CPU device node. Later on, when firmware
sees this bit set, it will perform CPU eject which will clear bit #4
as well.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20201207140739.3829993-3-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Only qemu-system-FOO and qemu-storage-daemon provide QMP
monitors, therefore such declarations and definitions are
irrelevant for user-mode emulation.
Extracting the ACPI commands to their own schema reduces the size of
the qapi-misc* headers generated, and pulls less QAPI-generated code
into user-mode.
Suggested-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20200913195348.1064154-8-philmd@redhat.com>
[Commit message tweaked]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
In case firmware has negotiated CPU hotplug SMI feature, generate
AML to describe SMI IO port region and send SMI to firmware
on each CPU hotplug SCI in case new CPUs were hotplugged.
Since new CPUs can be hotplugged while CPU_SCAN_METHOD is running
we can't send SMI before new CPUs are fetched from QEMU as it
could cause sending Notify to a CPU that firmware hasn't seen yet.
So fetch new CPUs into local cache first, then send SMI and
after that send Notify events to cached CPUs. This should ensure
that Notify is sent only to CPUs which were processed by firmware
first.
Any CPUs that were hotplugged after caching will be processed
by the next CPU_SCAN_METHOD, when pending SCI is handled.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200923094650.1301166-10-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Firmware can enumerate present at boot APs by broadcasting wakeup IPI,
so that woken up secondary CPUs could register them-selves.
However in CPU hotplug case, it would need to know architecture
specific CPU IDs for possible and hotplugged CPUs so it could
prepare environment for and wake hotplugged AP.
Reuse and extend existing CPU hotplug interface to return architecture
specific ID for currently selected CPU in 2 registers:
- lower 32 bits in ACPI_CPU_CMD_DATA_OFFSET_RW
- upper 32 bits in ACPI_CPU_CMD_DATA2_OFFSET_R
On x86, firmware will use CPHP_GET_CPU_ID_CMD for fetching the APIC ID
when handling hotplug SMI.
Later, CPHP_GET_CPU_ID_CMD will be used on ARM to retrieve MPIDR,
which serves the similar to APIC ID purpose.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1575896942-331151-10-git-send-email-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
No functional change in practice, patch only aims to properly
document (in spec and code) intended usage of the reserved space.
The new field is to be used for 2 purposes:
- detection of modern CPU hotplug interface using
CPHP_GET_NEXT_CPU_WITH_EVENT_CMD command.
procedure will be described in follow up patch:
"acpi: cpuhp: spec: add typical usecases"
- for returning upper 32 bits of architecture specific CPU ID,
for new CPHP_GET_CPU_ID_CMD command added by follow up patch:
"acpi: cpuhp: add CPHP_GET_CPU_ID_CMD command"
Change is backward compatible with 4.2 and older machines, as field was
unconditionally reserved and always returned 0x0 if modern CPU hotplug
interface was enabled.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1575896942-331151-8-git-send-email-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
In my "build everything" tree, changing migration/vmstate.h triggers a
recompile of some 2700 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
hw/hw.h supposedly includes it for convenience. Several other headers
include it just to get VMStateDescription. The previous commit made
that unnecessary.
Include migration/vmstate.h only where it's still needed. Touching it
now recompiles only some 1600 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-16-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
When unplugging a device, at one point the device will be destroyed
via object_unparent(). This will, one the one hand, unrealize the
removed device hierarchy, and on the other hand, destroy/free the
device hierarchy.
When chaining hotplug handlers, we want to overwrite a bus hotplug
handler by the machine hotplug handler, to be able to perform
some part of the plug/unplug and to forward the calls to the bus hotplug
handler.
For now, the bus hotplug handler would trigger an object_unparent(), not
allowing us to perform some unplug action on a device after we forwarded
the call to the bus hotplug handler. The device would be gone at that
point.
machine_unplug_handler(dev)
/* eventually do unplug stuff */
bus_unplug_handler(dev)
/* dev is gone, we can't do more unplug stuff */
So move the object_unparent() to the original caller of the unplug. For
now, keep the unrealize() at the original places of the
object_unparent(). For implicitly chained hotplug handlers (e.g. pc
code calling acpi hotplug handlers), the object_unparent() has to be
done by the outermost caller. So when calling hotplug_handler_unplug()
from inside an unplug handler, nothing is to be done.
hotplug_handler_unplug(dev) -> calls machine_unplug_handler()
machine_unplug_handler(dev) {
/* eventually do unplug stuff */
bus_unplug_handler(dev) -> calls unrealize(dev)
/* we can do more unplug stuff but device already unrealized */
}
object_unparent(dev)
In the long run, every unplug action should be factored out of the
unrealize() function into the unplug handler (especially for PCI). Then
we can get rid of the additonal unrealize() calls and object_unparent()
will properly unrealize the device hierarchy after the device has been
unplugged.
hotplug_handler_unplug(dev) -> calls machine_unplug_handler()
machine_unplug_handler(dev) {
/* eventually do unplug stuff */
bus_unplug_handler(dev) -> only unplugs, does not unrealize
/* we can do more unplug stuff */
}
object_unparent(dev) -> will unrealize
The original approach was suggested by Igor Mammedov for the PCI
part, but I extended it to all hotplug handlers. I consider this one
step into the right direction.
To summarize:
- object_unparent() on synchronous unplugs is done by common code
-- "Caller of hotplug_handler_unplug"
- object_unparent() on asynchronous unplugs ("unplug requests") has to
be done manually
-- "Caller of hotplug_handler_unplug"
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190228122849.4296-2-david@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
apci_1_compatible should be acpi_1_compatible.
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190125094047.22276-1-dgilbert@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
The first cpu unplug wasn't ever supported and corresponding
monitor/qmp commands refuse to unplug it. However guest is able
to issue eject request either using following command:
# echo 1 >/sys/devices/system/cpu/cpu0/firmware_node/eject
or directly writing to cpu hotplug registers, which makes
qemu crash with SIGSEGV following back trace:
kvm_flush_coalesced_mmio_buffer ()
while (ring->first != ring->last)
...
qemu_flush_coalesced_mmio_buffer
prepare_mmio_access
flatview_read_continue
flatview_read
address_space_read_full
address_space_rw
kvm_cpu_exec(cpu!0)
qemu_kvm_cpu_thread_fn
the reason for which is that ring == KVMState::coalesced_mmio_ring
happens to be a part of 1st CPU that was uplugged by guest.
Fix it by forbidding 1st cpu unplug from guest side and in addition
remove CPU0._EJ0 ACPI method to make clear that unplug of the first
CPU is not supported.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The generated qapi_event_send_FOO() take an Error ** argument. They
can't actually fail, because all they do with the argument is passing it
to functions that can't fail: the QObject output visitor, and the
@qmp_emit callback, which is either monitor_qapi_event_queue() or
event_test_emit().
Drop the argument, and pass &error_abort to the QObject output visitor
and @qmp_emit instead.
Suggested-by: Eric Blake <eblake@redhat.com>
Suggested-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20180815133747.25032-4-peterx@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
[Commit message rewritten, update to qapi-code-gen.txt corrected]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
The previous commit improved compile time by including less of the
generated QAPI headers. This is impossible for stuff defined directly
in qapi-schema.json, because that ends up in headers that that pull in
everything.
Move everything but include directives from qapi-schema.json to new
sub-module qapi/misc.json, then include just the "misc" shard where
possible.
It's possible everywhere, except:
* monitor.c needs qmp-command.h to get qmp_init_marshal()
* monitor.c, ui/vnc.c and the generated qapi-event-FOO.c need
qapi-event.h to get enum QAPIEvent
Perhaps we'll get rid of those some other day.
Adding a type to qapi/migration.json now recompiles some 120 instead
of 2300 out of 5100 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180211093607.27351-25-armbru@redhat.com>
[eblake: rebase to master]
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <1494415802-227633-9-git-send-email-imammedo@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
so it could be reused for SPAPR cores as well
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
make sure that external callers won't try to modify
possible_cpus and owner of possible_cpus can access
it directly when it modifies it.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1484759609-264075-5-git-send-email-imammedo@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Workaround for long standing issue where Linux kernel
assigns hotplugged CPU to 1st numa node as it discards
proximity for possible CPUs from SRAT after it's parsed.
_PXM method allows linux query proximity directly from
hotplugged CPU object, which allows Linux to assing CPU
to the correct numa node.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
For compatibility reasons PC/Q35 will start with legacy
CPU hotplug interface by default but with new CPU hotplug
AML code since 2.7 machine type. That way legacy firmware
that doesn't use QEMU generated ACPI tables will be
able to continue using legacy CPU hotplug interface.
While new machine type, with firmware supporting QEMU
provided ACPI tables, will generate new CPU hotplug AML,
which will switch to new CPU hotplug interface when
guest OS executes its _INI method on ACPI tables
loading.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
it adds HW and AML parts for CPU_Device._OST method
handling to allow OSPM reports status of hot-(un)plug
operation.
And extends QMP command query-acpi-ospm-status to report
CPU's OST info along with already reported PC-DIMM devices.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
it adds hw registers needed for handling CPU hot-remove and
corresponding AML methods to request and eject a CPU with
necessary hotplug callbacks in pc,piix4,ich9 code.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
it adds hw registers needed for handling CPU hot-add and
corresponding AML methods to handle hot-add events on
guest side.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
it adds CPU objects to DSDT with _STA method
and QEMU side of CPU hotplug interface initialization
with registers sufficient to handle _STA requests,
including necessary hotplug callbacks in piix4,ich9 code.
Hot-(un)plug hw/acpi parts will be added by
corresponding follow up patches.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>