This fixes a nasty regression in qemu-4.1 for the 'pseries' machine,
caused by the new "dual" interrupt controller model. Specifically,
qemu can crash when used with KVM if a 'system_reset' is requested
while there's active I/O in the guest.
The problem is that in spapr_machine_reset() we:
1. Reset the CAS vector state
spapr_ovec_cleanup(spapr->ov5_cas);
2. Reset all devices
qemu_devices_reset()
3. Reset the irq subsystem
spapr_irq_reset();
However (1) implicitly changes the interrupt delivery mode, because
whether we're using XICS or XIVE depends on the CAS state. We don't
properly initialize the new irq mode until (3) though - in particular
setting up the KVM devices.
During (2), we can temporarily drop the BQL allowing some irqs to be
delivered which will go to an irq system that's not properly set up.
Specifically, if the previous guest was in (KVM) XIVE mode, the CAS
reset will put us back in XICS mode. kvm_kernel_irqchip() still
returns true, because XIVE was using KVM, however XICs doesn't have
its KVM components intialized and kernel_xics_fd == -1. When the irq
is delivered it goes via ics_kvm_set_irq() which assert()s that
kernel_xics_fd != -1.
This change addresses the problem by delaying the CAS reset until
after the devices reset. The device reset should quiesce all the
devices so we won't get irqs delivered while we mess around with the
IRQ. The CAS reset and irq re-initialize should also now be under the
same BQL critical section so nothing else should be able to interrupt
it either.
We also move the spapr_irq_msi_reset() used in one of the legacy irq
modes, since it logically makes sense at the same point as the
spapr_irq_reset() (it's essentially an equivalent operation for older
machine types). Since we don't need to switch between different
interrupt controllers for those old machine types it shouldn't
actually be broken in those cases though.
Cc: Cédric Le Goater <clg@kaod.org>
Fixes: b2e22477 "spapr: add a 'reset' method to the sPAPR IRQ backend"
Fixes: 13db0cd9 "spapr: introduce a new sPAPR IRQ backend supporting
XIVE and XICS"
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Just to give an indication to the user that the error condition is
handled and how.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156398743479.546975.14566809803480887488.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Legacy '-numa node,mem' option has a number of issues and mgmt often
defaults to it. Unfortunately it's no possible to replace it with
an alternative '-numa memdev' without breaking migration compatibility.
What's possible though is to deprecate it, keeping option working with
old machine types only.
In order to help users to find out if being deprecated CLI option
'-numa node,mem' is still supported by particular machine type, add new
"numa-mem-supported" property to output of query-machines.
"numa-mem-supported" is set to 'true' for machines that currently support
NUMA, but it will be flipped to 'false' later on, once deprecation period
expires and kept 'true' only for old machine types that used to support
the legacy option so it won't break existing configuration that are using
it.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1560172207-378962-1-git-send-email-imammedo@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The global smp variables in ppc are replaced with smp machine properties.
A local variable of the same name would be introduced in the declaration
phase if it's used widely in the context OR replace it on the spot if it's
only used once. No semantic changes.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20190518205428.90532-5-like.xu@linux.intel.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
To get rid of the global smp_* variables we're currently using, it's recommended
to pass MachineState in the list of incoming parameters for functions that use
global smp variables, thus some redundant parameters are dropped. It's applied
for legacy smbios_*(), *_machine_reset(), hot_add_cpu() and mips *_create_cpu().
Suggested-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190518205428.90532-3-like.xu@linux.intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190619201050.19040-14-armbru@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
The init_emu() handles are now empty. Remove them and rename
spapr_irq_init_device() to spapr_irq_init_kvm().
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190614165920.12670-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, the interrupt device is fully initialized at reset when the CAS
negotiation process has completed. Depending on the KVM capabilities,
the SpaprXive memory regions (ESB, TIMA) are initialized with a host
MMIO backend or a QEMU emulated backend. This results in a complex
initialization sequence partially done at realize and later at reset,
and some memory region leaks.
To simplify this sequence and to remove of the late initialization of
the emulated device which is required to be done only once, we
introduce new memory regions specific for KVM. These regions are
mapped as overlaps on top of the emulated device to make use of the
host MMIOs. Also provide proper cleanups of these regions when the
XIVE KVM device is destroyed to fix the leaks.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190614165920.12670-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Hot-unplugging a PHB with a VFIO device connected to it crashes QEMU:
-device spapr-pci-host-bridge,index=1,id=phb1 \
-device vfio-pci,host=0034:01:00.3,id=vfio0
(qemu) device_del phb1
[ 357.207183] iommu: Removing device 0001:00:00.0 from group 1
[ 360.375523] rpadlpar_io: slot PHB 1 removed
qemu-system-ppc64: memory.c:2742:
do_address_space_destroy: Assertion `QTAILQ_EMPTY(&as->listeners)' failed.
'as' is the IOMMU address space, which indeed has a listener registered
to by vfio_connect_container() when the VFIO device is realized. This
listener is supposed to be unregistered by vfio_disconnect_container()
when the VFIO device is finalized. Unfortunately, the VFIO device hasn't
reached finalize yet at the time the PHB unrealize function is called,
and address_space_destroy() gets called with the VFIO listener still
being registered.
All regions have just been unmapped from the address space. Listeners
aren't needed anymore at this point. Remove them before destroying the
address space.
The VFIO code will try to remove them _again_ at device finalize,
but it is okay since memory_listener_unregister() is idempotent.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156110925375.92514.11649846071216864570.stgit@bahia.lan>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[dwg: Correct spelling error pointed out by aik]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Introduce a KVM helper and its stub instead of guarding the code with
CONFIG_KVM.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051055736.224162.11641594431517798715.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Switch to using the connect/disconnect terminology like we already do for
XIVE.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077920102.433243.6605099291134598170.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
kvmppc_set_interrupt() has a stub that does nothing when CONFIG_KVM is
not defined.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051055182.224162.15842560287892241124.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
kvm_enabled() expands to (0) when CONFIG_KVM is not defined. It is
likely that the compiler will optimize the code out. And even if
it doesn't, we have a stub for kvmppc_get_hypercall().
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051054630.224162.6140707722034383410.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
kvm_enabled() expands to (0) when CONFIG_KVM is not defined. The first
CONFIG_KVM guard is thus useless and it is likely that the compiler
will optimize the code out in the case of the second guard. And even
if it doesn't, we have a stub for kvmppc_get_hypercall().
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051054077.224162.9332715375637801197.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
kvm_enabled() expands to (0) when CONFIG_KVM is not defined. It is
likely that the compiler will optimize the code out. And even if
it doesn't, we have a stub for kvmppc_get_hypercall().
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051053529.224162.3489943067148134636.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
kvm_enabled() expands to (0) when CONFIG_KVM is not defined.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051052977.224162.17306829691809502082.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr_dt_drc() scans the aliases of all DRConnector objects and filters
the ones that it will use to generate OF properties according to their
owner and type.
Passing bus->parent_dev _works_ if bus belongs to a PCI bridge, but it is
NULL if it is the PHB's root bus. This causes all allocated PCI DRCs to
be associated to all PHBs (visible in their "ibm,drc-types" properties).
As a consequence, hot unplugging a PHB results in PCI devices from the
other PHBs to be unplugged as well, and likely confuses the guest.
Use the same logic as in add_drcs() to ensure the correct owner is passed
to spapr_dt_drc().
Fixes: 14e714900f "spapr: Allow hot plug/unplug of PCI bridges and devices under PCI bridges"
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156084737348.512412.3552825999605902691.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Older KVMs on POWER9 don't support destroying/recreating a KVM XICS
device, which is required by 'dual' interrupt controller mode. This
causes QEMU to emit a warning when the guest is rebooted and to fall
back on XICS emulation:
qemu-system-ppc64: warning: kernel_irqchip allowed but unavailable:
Error on KVM_CREATE_DEVICE for XICS: File exists
If kernel irqchip is required, QEMU will thus exit when the guest is
first rebooted. Failing QEMU this late may be a painful experience
for the user.
Detect that and exit at machine init instead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156044430517.125694.6207865998817342638.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
QEMU may crash when running a spapr machine in 'dual' interrupt controller
mode on some older (but not that old, eg. ubuntu 18.04.2) KVMs with partial
XIVE support:
qemu-system-ppc64: hw/ppc/spapr_rtas.c:411: spapr_rtas_register:
Assertion `!name || !rtas_table[token].name' failed.
XICS is controlled by the guest thanks to a set of RTAS calls. Depending
on whether KVM XICS is used or not, the RTAS calls are handled by KVM or
QEMU. In both cases, QEMU needs to expose the RTAS calls to the guest
through the "rtas" node of the device tree.
The spapr_rtas_register() helper takes care of all of that: it adds the
RTAS call token to the "rtas" node and registers a QEMU callback to be
invoked when the guest issues the RTAS call. In the KVM XICS case, QEMU
registers a dummy callback that just prints an error since it isn't
supposed to be invoked, ever.
Historically, the XICS controller was setup during machine init and
released during final teardown. This changed when the 'dual' interrupt
controller mode was added to the spapr machine: in this case we need
to tear the XICS down and set it up again during machine reset. The
crash happens because we indeed have an incompatibility with older
KVMs that forces QEMU to fallback on emulated XICS, which tries to
re-registers the same RTAS calls.
This could be fixed by adding proper rollback that would unregister
RTAS calls on error. But since the emulated RTAS calls in QEMU can
now detect when they are mistakenly called while KVM XICS is in
use, it seems simpler to register them once and for all at machine
init. This fixes the crash and allows to remove some now useless
lines of code.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156044429963.125694.13710679451927268758.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 14e714900f refactored the call to spapr_dt_drc(),
introducing a potential NULL pointer dereference while
accessing bus->parent_dev.
A trivial audit show 'bus' is not null in the two places
the static function spapr_dt_drc() is called.
Since the 'bus' parameter is not NULL in both callers, remove
remove the test on if (bus), and add an assert() to silent
static analyzers.
This fixes:
/hw/ppc/spapr_pci.c: 1367 in spapr_dt_pci_bus()
>>> CID 1401933: Null pointer dereferences (FORWARD_NULL)
>>> Dereferencing null pointer "bus".
1367 ret = spapr_dt_drc(fdt, offset, OBJECT(bus->parent_dev),
1368 SPAPR_DR_CONNECTOR_TYPE_PCI);
Fixes: 14e714900f
Reported-by: Coverity (CID 1401933)
Suggested-by: Greg Kurz <groug@kaod.org>
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190613213406.22053-1-philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It has now became useless with the previous patch.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190612174345.9799-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PNV_XSCOM_BASE and PNV_XSCOM_SIZE macros are specific to POWER8
and they are used when the device tree is populated and the MMIO
region created, even for POWER9 chips. This is not too much of a
problem today because we don't have important devices on the second
chip, but we might have oneday (PHBs).
Fix by using the appropriate macros in case of P9.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190612174345.9799-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Next pull request against qemu-4.1. The big thing here is adding
support for hot plug of P2P bridges, and PCI devices under P2P bridges
on the "pseries" machine (which doesn't use SHPC). Other than that
there's just a handful of fixes and small enhancements.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAl0AkgwACgkQbDjKyiDZ
s5Jyug//cwxP+t1t2CNHtffKwiXFzuEKx9YSNE1V0wog6aB40EbPKU72FzCq6FfA
lev+pZWV9AwVMzFYe4VM/7Lqh7WFMYDT3DOXaZwfANs4471vYtgvPi21L2TBj80d
hMszlyLWMLY9ByOzCxIq3xnbivGpA94G2q9rKbwXdK4T/5i62Pe3SIfgG+gXiiwW
+YlHWCPX0I1cJz2bBs9ElXdl7ONWnn+7uDf7gNfWkTKuiUq6Ps7mxzy3GhJ1T7nz
OFKmQ5dKzLJsgOULSSun8kWpXBmnPffkM3+fCE07edrWZVor09fMCk4HvtfaRy2K
FFa2Kvzn/V/70TL+44dsSX4QcwdcHQztiaMO7UGPq9CMswx5L7gsNmfX6zvK1Nrb
1t7ORZKNJ72hMyvDPSMiGU2DpVjO3ZbBlSL4/xG8Qeal4An0kgkN5NcFlB/XEfnz
dsKu9XzuGSeD1bWz1Mgcf1x7lPDBoHIKLcX6notZ8epP/otu4ywNFvAkPu4fk8s0
4jQGajIT7328SmzpjXClsmiEskpKsEr7hQjPRhu0hFGrhVc+i9PjkmbDl0TYRAf6
N6k6gJQAi+StJde2rcua1iS7Ra+Tka6QRKy+EctLqfqOKPb2VmkZ6fswQ3nfRRlT
LgcTHt2iJcLeud2klVXs1e4pKXzXchkVyFL4ucvmyYG5VeimMzU=
=ERgu
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-4.1-20190612' into staging
ppc patch queue 2019-06-12
Next pull request against qemu-4.1. The big thing here is adding
support for hot plug of P2P bridges, and PCI devices under P2P bridges
on the "pseries" machine (which doesn't use SHPC). Other than that
there's just a handful of fixes and small enhancements.
# gpg: Signature made Wed 12 Jun 2019 06:47:56 BST
# gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-4.1-20190612:
ppc/xive: Make XIVE generate the proper interrupt types
ppc/pnv: activate the "dumpdtb" option on the powernv machine
target/ppc: Use tcg_gen_gvec_bitsel
spapr: Allow hot plug/unplug of PCI bridges and devices under PCI bridges
spapr: Direct all PCI hotplug to host bridge, rather than P2P bridge
spapr: Don't use bus number for building DRC ids
spapr: Clean up DRC index construction
spapr: Clean up spapr_drc_populate_dt()
spapr: Clean up dt creation for PCI buses
spapr: Clean up device tree construction for PCI devices
spapr: Clean up device node name generation for PCI devices
target/ppc: Fix lxvw4x, lxvh8x and lxvb16x
spapr_pci: Improve error message
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
No header includes qemu-common.h after this commit, as prescribed by
qemu-common.h's file comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-5-armbru@redhat.com>
[Rebased with conflicts resolved automatically, except for
include/hw/arm/xlnx-zynqmp.h hw/arm/nrf51_soc.c hw/arm/msf2-soc.c
block/qcow2-refcount.c block/qcow2-cluster.c block/qcow2-cache.c
target/arm/cpu.h target/lm32/cpu.h target/m68k/cpu.h target/mips/cpu.h
target/moxie/cpu.h target/nios2/cpu.h target/openrisc/cpu.h
target/riscv/cpu.h target/tilegx/cpu.h target/tricore/cpu.h
target/unicore32/cpu.h target/xtensa/cpu.h; bsd-user/main.c and
net/tap-bsd.c fixed up]
This is a good way to debug the DT creation for current PowerNV
machines and new ones to come.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190606174732.13051-1-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pseries machine type already allows PCI hotplug and unplug via the
PAPR mechanism, but only on the root bus of each PHB. This patch extends
this to allow PCI to PCI bridges to be hotplugged, and devices to be
hotplugged or unplugged under P2P bridges.
For now we disallow hot unplugging P2P bridges. I tried doing that, but
haven't managed to get it working, I think due to some guest side problems
that need further investigation.
To do this we dynamically construct DRCs when bridges are hot (or cold)
added, which can in turn be used to hotplug devices under the bridge.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
A P2P bridge will attempt to handle the hotplug with SHPC, which doesn't
work in the PAPR environment. Instead we want to direct all PCI hotplug
actions to the PAPR specific host bridge which will use the PAPR hotplug
mechanism.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
DRC ids are more or less arbitrary, as long as they're consistent. For
PCI, we notionally build them from the phb's index along with PCI bus
number, slot and function number.
Using bus number is broken, however, because it can change if the guest
re-enumerates the PCI topology for whatever reason (e.g. due to hotplug
of a bridge, which we don't support yet but want to).
Fortunately, there's an alternative. Bridges are required to have a unique
non-zero "chassis number" that we can use instead. Adjust the code to
use that instead.
This looks like it would introduce a guest visible breaking change, but
in fact it does not because we don't yet ever use non-zero bus numbers.
Both chassis and bus number are always 0 for the root bus, so there's no
change for the existing cases.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
spapr_pci.c currently has several confusingly similarly named functions for
various conversions between representations of DRCs. Make things clearer
by renaming things in a more consistent XXX_from_YYY() manner and remove
some called-only-once variants in favour of open coding.
While we're at it, move this code together in the file to avoid some extra
forward references, and split out construction and removal of DRCs for the
host bridge into helper functions.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
This makes some minor cleanups to spapr_drc_populate_dt(), renaming it to
the shorter and more idiomatic spapr_dt_drc() along the way.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Device nodes for PCI bridges (both host and P2P) describe both the bridge
device itself and the bus hanging off it, handling of this is a bit of a
mess.
spapr_dt_pci_device() has a few things it only adds for non-bridges, but
always adds #address-cells and #size-cells which should only appear for
bridges. But the walking down the subordinate PCI bus is done in one of
its callers spapr_populate_pci_devices_dt(). The PHB dt creation in
spapr_populate_pci_dt() open codes some similar logic to the bridge case.
This patch consolidates things in a bunch of ways:
* Bus specific dt info is now created in spapr_dt_pci_bus() used for both
P2P bridges and the host bridge. This includes walking subordinate
devices
* spapr_dt_pci_device() now calls spapr_dt_pci_bus() when called on a
P2P bridge
* We do detection of bridges with the is_bridge field of the device class,
rather than checking PCI config space directly, for consistency with
qemu's core PCI code.
* Several things are renamed for brevity and clarity
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
spapr_create_pci_child_dt() is a trivial wrapper around
spapr_populate_pci_child_dt(), but is the latter's only caller. So fold
them together into spapr_dt_pci_device(), which closer matches our modern
naming convention.
While there, make a number of cleanups to the function itself. This is
mostly using more temporary locals to avoid awkwardly long lines, and in
some cases avoiding double reads of PCI config space variables.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
spapr_populate_pci_child_dt() adds a 'name' property to the device tree
node for PCI devices. This is never necessary for a flattened device tree,
it is implicit in the name added when the node is constructed. In fact
anything we do add to a 'name' property will be overwritten with something
derived from the structural name in the guest firmware (but in fact it is
exactly the same bytes).
So, remove that. In addition, pci_get_node_name() is very simple, so fold
it into its (also simple) sole caller spapr_create_pci_child_dt().
While we're there rename pci_find_device_name() to the shorter and more
accurate dt_name_from_class().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Every PHB must have a unique index. This is checked at realize but when
a duplicate index is detected, an error message mentioning BUIDs is
printed. This doesn't help much, especially since BUID is an internal
concept that is no longer exposed to the user.
Fix the message to mention the index property instead of BUID. As a bonus
print a list of indexes already in use.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155915010892.2061314.10485622810149098411.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Other accelerators have their own headers: sysemu/hax.h, sysemu/hvf.h,
sysemu/kvm.h, sysemu/whpx.h. Only tcg_enabled() & friends sit in
qemu-common.h. This necessitates inclusion of qemu-common.h into
headers, which is against the rules spelled out in qemu-common.h's
file comment.
Move tcg_enabled() & friends into their own header sysemu/tcg.h, and
adjust #include directives.
Cc: Richard Henderson <rth@twiddle.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-2-armbru@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[Rebased with conflicts resolved automatically, except for
accel/tcg/tcg-all.c]
Cleanup in the boilerplate that each target must define.
Replace ppc_env_get_cpu with env_archcpu. The combination
CPU(ppc_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
stricter rules for acpi tables: we now fail
on any difference that isn't whitelisted.
vhost-scsi migration.
some cleanups all over the place
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJc+B4YAAoJECgfDbjSjVRpq1EIAJR7tCxcpu9GggVlinmUA8G4
tmSAe06IryH7+nF3RsnINuGu7ius9qC2/E2y0uJUHhTqiU/RWOfWZ7PPM0EcYZaA
TLPaCe2NUF6/8afeqmvE9Usk7VspI5TDZRms+bonmZz2xP1lHIMN0qW4s7HHLWr8
sZKDtCJ+9cYII93VQwtlR0qiHgv5f0kzcuZeJaZHsAHH6XZGqRuQjI6txcFa4o53
lkdLCEwTnRuwu2wyL84eL5p+E8SzOgR/x1QI+nffrJfsvnmiT7lnOrkjnQlWAp5G
xqwqsUrUxUCuQ+zitwJqmv+H6nx79MwAM7fTHAETCWX703N5o9tZxAnHHqLoa8I=
=cQNg
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
virtio, pci, pc: cleanups, features
stricter rules for acpi tables: we now fail
on any difference that isn't whitelisted.
vhost-scsi migration.
some cleanups all over the place
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
# gpg: Signature made Wed 05 Jun 2019 20:55:04 BST
# gpg: using RSA key 281F0DB8D28D5469
# gpg: Good signature from "Michael S. Tsirkin <mst@kernel.org>" [full]
# gpg: aka "Michael S. Tsirkin <mst@redhat.com>" [full]
# Primary key fingerprint: 0270 606B 6F3C DF3D 0B17 0970 C350 3912 AFBE 8E67
# Subkey fingerprint: 5D09 FD08 71C8 F85B 94CA 8A0D 281F 0DB8 D28D 5469
* remotes/mst/tags/for_upstream:
bios-tables-test: ignore identical binaries
tests: acpi: add simple arm/virt testcase
tests: add expected ACPI tables for arm/virt board
bios-tables-test: list all tables that differ
vhost-scsi: Allow user to enable migration
vhost-scsi: Add VMState descriptor
vhost-scsi: The vhost backend should be stopped when the VM is not running
bios-tables-test: add diff allowed list
vhost: fix memory leak in vhost_user_scsi_realize
vhost: fix incorrect print type
vhost: remove the dead code
docs: smbios: remove family=x from type2 entry description
pci: Fold pci_get_bus_devfn() into its sole caller
pci: Make is_bridge a bool
pcie: Simplify pci_adjust_config_limit()
acpi: pci: use build_append_foo() API to construct MCFG
hw/acpi: Consolidate build_mcfg to pci.c
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Since c2077e2c "pci: Adjust PCI config limit based on bus topology",
pci_adjust_config_limit() has been used in the config space read and write
paths to only permit access to extended config space on buses which permit
it. Specifically it prevents access on devices below a vanilla-PCI bus via
some combination of bridges, even if both the host bridge and the device
itself are PCI-E.
It accomplishes this with a somewhat complex call up the chain of bridges
to see if any of them prohibit extended config space access. This is
overly complex, since we can always know if the bus will support such
access at the point it is constructed.
This patch simplifies the test by using a flag in the PCIBus instance
indicating whether extended configuration space is accessible. It is
false for vanilla PCI buses. For PCI-E buses, it is true for root
buses and equal to the parent bus's's capability otherwise.
For the special case of sPAPR's paravirtualized PCI root bus, which
acts mostly like vanilla PCI, but does allow extended config space
access, we override the default value of the flag from the host bridge
code.
This should cause no behavioural change.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20190513061939.3464-4-david@gibson.dropbear.id.au>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
PRD (Processor recovery diagnostics) is a service available on
OpenPower systems. The opal-prd daemon initializes the PowerPC
Processor through the XSCOM bus and then waits for hardware diagnostic
events.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190527071722.31424-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Newer skiboots (after 6.3) support QEMU platforms that have
characteristics closer to real OpenPOWER systems. The CPU type is used
to define the BMC drivers: Aspeed AST2400 for POWER8 processors and
AST2500 for POWER9s.
Advertise the new platform property names, "qemu,powernv8" and
"qemu,powernv9", using the CPU type chosen for the QEMU PowerNV
machine. Also, advertise the original platform name "qemu,powernv" in
case of POWER8 processors for compatibility with older skiboots.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190527071749.31499-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 0b8c89be7f7b added the hpt_maxpagesize capability to the migration
stream. This is okay for new machine types but it breaks backward migration
to older QEMUs, which don't expect the extra subsection.
Add a compatibility boolean flag to the sPAPR machine class and use it to
skip migration of the capability for machine types 4.0 and older. This
fixes migration to an older QEMU. Note that the destination will emit a
warning:
qemu-system-ppc64: warning: cap-hpt-max-page-size lower level (16) in incoming stream than on destination (24)
This is expected and harmless though. It is okay to migrate from a lower
HPT maximum page size (64k) to a greater one (16M).
Fixes: 0b8c89be7f7b "spapr: Add forgotten capability to migration stream"
Based-on: <20190522074016.10521-3-clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155853262675.1158324.17301777846476373459.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Now that XIVE support is complete (QEMU emulated and KVM devices),
change the pseries machine to advertise both interrupt modes: XICS
(P7/P8) and XIVE (P9).
The machine default interrupt modes depends on the version. Current
settings are:
pseries default interrupt mode
4.1 dual
4.0 xics
3.1 xics
3.0 legacy xics (different IRQ number space layout)
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190522074016.10521-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The interrupt mode is chosen by the CAS negotiation process and
activated after a reset to take into account the required changes in
the machine. This brings new constraints on how the associated KVM IRQ
device is initialized.
Currently, each model takes care of the initialization of the KVM
device in their realize method but this is not possible anymore as the
initialization needs to be done globaly when the interrupt mode is
known, i.e. when machine is reseted. It also means that we need a way
to delete a KVM device when another mode is chosen.
Also, to support migration, the QEMU objects holding the state to
transfer should always be available but not necessarily activated.
The overall approach of this proposal is to initialize both interrupt
mode at the QEMU level to keep the IRQ number space in sync and to
allow switching from one mode to another. For the KVM side of things,
the whole initialization of the KVM device, sources and presenters, is
grouped in a single routine. The XICS and XIVE sPAPR IRQ reset
handlers are modified accordingly to handle the init and the delete
sequences of the KVM device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-15-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The way the XICS and the XIVE devices are initialized follows the same
pattern. First, try to connect to the KVM device and if not possible
fallback on the emulated device, unless a kernel_irqchip is required.
The spapr_irq_init_device() routine implements this sequence in
generic way using new sPAPR IRQ handlers ->init_emu() and ->init_kvm().
The XIVE init sequence is moved under the associated sPAPR IRQ
->init() handler. This will change again when KVM support is added for
the dual interrupt mode.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-12-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
All is in place for KVM now. State synchronization and migration will
come next.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-8-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the VM is stopped, the VM state handler stabilizes the XIVE IC
and marks the EQ pages dirty. These are then transferred to destination
before the transfer of the device vmstates starts.
The SpaprXive interrupt controller model captures the XIVE internal
tables, EAT and ENDT and the XiveTCTX model does the same for the
thread interrupt context registers.
At restart, the SpaprXive 'post_load' method restores all the XIVE
states. It is called by the sPAPR machine 'post_load' method, when all
XIVE states have been transferred and loaded.
Finally, the source states are restored in the VM change state handler
when the machine reaches the running state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This introduces a set of helpers when KVM is in use, which create the
KVM XIVE device, initialize the interrupt sources at a KVM level and
connect the interrupt presenters to the vCPU.
They also handle the initialization of the TIMA and the source ESB
memory regions of the controller. These have a different type under
KVM. They are 'ram device' memory mappings, similarly to VFIO, exposed
to the guest and the associated VMAs on the host are populated
dynamically with the appropriate pages using a fault handler.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Let's suggest to the user how the machine should be configured to allow
the guest to boot successfully.
Suggested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155799221739.527449.14907564571096243745.stgit@bahia.lan>
Reviewed-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
[dwg: Adjusted for style error]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>