Leading underscores are ill-advised because such identifiers are
reserved. Trailing underscores are merely ugly. Strip both.
Our header guards commonly end in _H. Normalize the exceptions.
Macros should be ALL_CAPS. Normalize the exception.
Done with scripts/clean-header-guards.pl.
include/hw/xen/interface/ and tools/virtiofsd/ left alone, because
these were imported from Xen and libfuse respectively.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20220506134911.2856099-3-armbru@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
When pulling or pushing an OS context from/to a CPU, we should
re-evaluate the state of the External interrupt signal. Otherwise, we
can end up catching the External interrupt exception in hypervisor
mode, which is unexpected.
The problem is best illustrated with the following scenario:
1. an External interrupt is raised while the guest is on the CPU.
2. before the guest can ack the External interrupt, an hypervisor
interrupt is raised, for example the Hypervisor Decrementer or
Hypervisor Virtualization interrupt. The hypervisor interrupt forces
the guest to exit while the External interrupt is still pending.
3. the hypervisor handles the hypervisor interrupt. At this point, the
External interrupt is still pending. So it's very likely to be
delivered while the hypervisor is running. That's unexpected and can
result in an infinite loop where the hypervisor catches the External
interrupt, looks for an interrupt in its hypervisor queue, doesn't
find any, exits the interrupt handler with the External interrupt
still raised, repeat...
The fix is simply to always lower the External interrupt signal when
pulling an OS context. It means it needs to be raised again when
re-pushing the OS context. Fortunately, it's already the case, as we
now always call xive_tctx_ipb_update(), which will raise the signal if
needed.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Frederic Barrat <fbarrat@linux.ibm.com>
Message-Id: <20220429071620.177142-3-fbarrat@linux.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
There are still some files in the QEMU PPC code base that use TABs for
indentation instead of using spaces. The TABs should be replaced so
that we have a consistent coding style.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/374
Signed-off-by: Guo Zhi <qtxuning1999@sjtu.edu.cn>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220412021240.2080218-1-qtxuning1999@sjtu.edu.cn>
[danielhb: trimmed commit msg to 72 chars per line]
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
All devices raising PSI interrupts are now converted to use GPIO lines
and the pnv_psi_irq_set() routines have become useless. Drop them.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220323072846.1780212-5-clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Use an anonymous output GPIO line to connect the OCC device with the
PSIHB device and raise the appropriate PSI IRQ line depending on the
processor model.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220323072846.1780212-4-clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Create an anonymous output GPIO line to connect the LPC device with
the PSIHB device and raise the appropriate PSI IRQ line depending on
the processor model.
A temporary __pnv_psi_irq_set() routine is introduced to handle the
transition. It will be removed when all devices raising PSI interrupts
are converted to use GPIOs.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220323072846.1780212-3-clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
On HW, the PSI and FSP interrupt levels are muxed under the same
interrupt number. For coding reasons, an extra IRQ number was
introduced to index register values in an array. It increased the
count of IRQs which do not fit in the PSI IRQ range anymore.
The PSI and FSP interrupts should be modeled with an extra level of
GPIO lines but since QEMU does not support them, simply drop the extra
number to stay within the IRQ range.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220323072846.1780212-2-clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Recently the LoPAPR spec got a new 2MB pagesize to support in Dynamic DMA
Windows API (DDW), this adds the new flag.
Linux supports it since
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=38727311871
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20220321071945.918669-1-aik@ozlabs.ru>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
The timebase is allocated during spapr_realize_vcpu() and it's not
freed. This results in memory leaks when doing vcpu unplugs:
==636935==
==636935== 144 (96 direct, 48 indirect) bytes in 1 blocks are definitely lost in loss record 6
,461 of 8,135
==636935== at 0x4897468: calloc (vg_replace_malloc.c:760)
==636935== by 0x5077213: g_malloc0 (in /usr/lib64/libglib-2.0.so.0.6400.4)
==636935== by 0x507757F: g_malloc0_n (in /usr/lib64/libglib-2.0.so.0.6400.4)
==636935== by 0x93C3FB: cpu_ppc_tb_init (ppc.c:1066)
==636935== by 0x97BC2B: spapr_realize_vcpu (spapr_cpu_core.c:268)
==636935== by 0x97C01F: spapr_cpu_core_realize (spapr_cpu_core.c:337)
==636935== by 0xD4626F: device_set_realized (qdev.c:531)
==636935== by 0xD55273: property_set_bool (object.c:2273)
==636935== by 0xD523DF: object_property_set (object.c:1408)
==636935== by 0xD588B7: object_property_set_qobject (qom-qobject.c:28)
==636935== by 0xD52897: object_property_set_bool (object.c:1477)
==636935== by 0xD4579B: qdev_realize (qdev.c:333)
==636935==
This patch adds a cpu_ppc_tb_free() helper in hw/ppc/ppc.c to allow us
to free the timebase. This leak is then solved by calling
cpu_ppc_tb_free() in spapr_unrealize_vcpu().
Fixes: 6f4b5c3ec5 ("spapr: CPU hot unplug support")
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220329124545.529145-2-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
On a real system with POWER{8,9,10} processors, PHBs are sub-units of
the processor, they can be deactivated by firmware but not plugged in
or out like a PCI adapter on a slot. Nevertheless, having user-created
PHBs in QEMU seemed to be a good idea for testing purposes :
1. having a limited set of PHBs speedups boot time.
2. it is useful to be able to mimic a partially broken topology you
some time have to deal with during bring-up.
PowerNV is also used for distro install tests and having libvirt
support eases these tasks. libvirt prefers to run the machine with
-nodefaults to be sure not to drag unexpected devices which would need
to be defined in the domain file without being specified on the QEMU
command line. For this reason :
3. -nodefaults should not include default PHBs
User-created PHB{3,4,5} devices satisfied all these needs but reality
proves to be a bit more complex, internally when modeling such
devices, and externally when dealing with the user interface.
Req 1. and 2. can be simply addressed differently with a machine option:
"phb-mask=<uint>", which QEMU would use to enable/disable PHB device
nodes when creating the device tree.
For Req 3., we need to make sure we are taking the right approach. It
seems that we should expose a new type of user-created PHB device, a
generic virtualized one, that libvirt would use and not one depending
on the processor revision. This needs more thinking.
For now, remove user-created PHB{3,4,5} devices. All the cleanups we
did are not lost and they will be useful for the next steps.
Fixes: 5bc67b052b ("ppc/pnv: Introduce user creatable pnv-phb4 devices")
Fixes: 1f6a88fffc ("ppc/pnv: Introduce support for user created PHB3 devices")
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220314130514.529931-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The XIVE interrupt controller on P10 can automatically save and
restore the state of the interrupt registers under the internal NVP
structure representing the VCPU. This saves a costly store/load in
guest entries and exits.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Add GEN1 config even if we don't use it yet in the core framework.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Only the CAM line updates done by the hypervisor are specific to
POWER10. Instead of duplicating the TM ops table, we handle these
commands locally under the PowerNV XIVE2 model.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PQ_disable configuration bit disables the check done on the PQ
state bits when processing new MSI interrupts. When bit 9 is enabled,
the PHB forwards any MSI trigger to the XIVE interrupt controller
without checking the PQ state bits. The XIVE IC knows from the trigger
message that the PQ bits have not been checked and performs the check
locally.
This configuration bit only applies to MSIs and LSIs are still checked
on the PHB to handle the assertion level.
PQ_disable enablement is a requirement for StoreEOI.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The trigger message coming from a HW source contains a special bit
informing the XIVE interrupt controller that the PQ bits have been
checked at the source or not. Depending on the value, the IC can
perform the check and the state transition locally using its own PQ
state bits.
The following changes add new accessors to the XiveRouter required to
query and update the PQ state bits. This only applies to the PowerNV
machine. sPAPR accessors are provided but the pSeries machine should
not be concerned by such complex configuration for the moment.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This is an internal offset used to inject triggers when the PQ state
bits are not controlled locally. Such as for LSIs when the PHB5 are
using the Address-Based Interrupt Trigger mode and on the END.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
and use a pnv_chip_power10_quad_realize() helper to avoid code
duplication with P9. This still needs some refinements on the XSCOM
registers handling in PnvQuad.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Our OCC model is very mininal and POWER10 can simply reuse the OCC
model we introduced for POWER9.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The XIVE2 interrupt controller of the POWER10 processor follows the
same logic than on POWER9 but the HW interface has been largely
reviewed. It has a new register interface, different BARs, extra
VSDs, new layout for the XIVE2 structures, and a set of new features
which are described below.
This is a model of the POWER10 XIVE2 interrupt controller for the
PowerNV machine. It focuses primarily on the needs of the skiboot
firmware but some initial hypervisor support is implemented for KVM
use (escalation).
Support for new features will be implemented in time and will require
new support from the OS.
* XIVE2 BARS
The interrupt controller BARs have a different layout outlined below.
Each sub-engine has now own its range and the indirect TIMA access was
replaced with a set of pages, one per CPU, under the IC BAR:
- IC BAR (Interrupt Controller)
. 4 pages, one per sub-engine
. 128 indirect TIMA pages
- TM BAR (Thread Interrupt Management Area)
. 4 pages
- ESB BAR (ESB pages for IPIs)
. up to 1TB
- END BAR (ESB pages for ENDs)
. up to 2TB
- NVC BAR (Notification Virtual Crowd)
. up to 128
- NVPG BAR (Notification Virtual Process and Group)
. up to 1TB
- Direct mapped Thread Context Area (reads & writes)
OPAL does not use the grouping and crowd capability.
* Virtual Structure Tables
XIVE2 adds new tables types and also changes the field layout of the END
and NVP Virtualization Structure Descriptors.
- EAS
- END new layout
- NVT was splitted in :
. NVP (Processor), 32B
. NVG (Group), 32B
. NVC (Crowd == P9 block group) 32B
- IC for remote configuration
- SYNC for cache injection
- ERQ for event input queue
The setup is slighly different on XIVE2 because the indexing has changed
for some of the tables, block ID or the chip topology ID can be used.
* XIVE2 features
SCOM and MMIO registers have a new layout and XIVE2 adds a new global
capability and configuration registers.
The lowlevel hardware offers a set of new features among which :
- a configurable number of priorities : 1 - 8
- StoreEOI with load-after-store ordering is activated by default
- Gen2 TIMA layout
- A P9-compat mode, or Gen1, TIMA toggle bit for SW compatibility
- increase to 24bit for VP number
Other features will have some impact on the Hypervisor and guest OS
when activated, but this is not required for initial support of the
controller.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The VP space is larger in XIVE2 (P10), 24 bits instead of 19bits on
XIVE (P9), and the CAM line can use a 7bits or 8bits thread id.
For now, we only use 7bits thread ids, same as P9, but because of the
change of the size of the VP space, the CAM matching routine is
different between P9 and P10. It is easier to duplicate the whole
routine than to add extra handlers in xive_presenter_tctx_match() used
for P9.
We might come with a better solution later on, after we have added
some more support for the XIVE2 controller.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The XIVE2 interrupt controller of the POWER10 processor as the same
logic as on POWER9 but its SW interface has been largely reworked. The
interrupt controller has a new register interface, different BARs,
extra VSDs. These will be described when we add the device model for
the baremetal machine.
The XIVE internal structures for the EAS, END, NVT have different
layouts which is a problem for the current core XIVE framework. To
avoid adding too much complexity in the XIVE models, a new XIVE2 core
framework is introduced. It duplicates the models which are closely
linked to the XIVE internal structures : Xive2Router and
Xive2ENDSource and reuses the XiveSource, XivePresenter, XiveTCTX
models, as they are more generic.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This implements the Nested KVM HV hcall API for spapr under TCG.
The L2 is switched in when the H_ENTER_NESTED hcall is made, and the
L1 is switched back in returned from the hcall when a HV exception
is sent to the vhyp. Register state is copied in and out according to
the nested KVM HV hcall API specification.
The hdecr timer is started when the L2 is switched in, and it provides
the HDEC / 0x980 return to L1.
The MMU re-uses the bare metal radix 2-level page table walker by
using the get_pate method to point the MMU to the nested partition
table entry. MMU faults due to partition scope errors raise HV
exceptions and accordingly are routed back to the L1.
The MMU does not tag translations for the L1 (direct) vs L2 (nested)
guests, so the TLB is flushed on any L1<->L2 transition (hcall entry
and exit).
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: checkpatch fixes ]
Message-Id: <20220216102545.1808018-10-npiggin@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Machines which don't emulate the HDEC facility are able to use the
timer for something else. Provide functions to start and stop the
hdecr timer.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[ clg: checkpatch fixes ]
Message-Id: <20220216102545.1808018-4-npiggin@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The patch adds support for the SCM flush hcall for the nvdimm devices.
To be available for exploitation by guest through the next patch. The
hcall is applicable only for new SPAPR specific device class which is
also introduced in this patch.
The hcall expects the semantics such that the flush to return with
H_LONG_BUSY_ORDER_10_MSEC when the operation is expected to take longer
time along with a continue_token. The hcall to be called again by providing
the continue_token to get the status. So, all fresh requests are put into
a 'pending' list and flush worker is submitted to the thread pool. The
thread pool completion callbacks move the requests to 'completed' list,
which are cleaned up after collecting the return status for the guest
in subsequent hcall from the guest.
The semantics makes it necessary to preserve the continue_tokens and
their return status across migrations. So, the completed flush states
are forwarded to the destination and the pending ones are restarted
at the destination in post_load. The necessary nvdimm flush specific
vmstate structures are also introduced in this patch which are to be
saved in the new SPAPR specific nvdimm device to be introduced in the
following patch.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <164396254862.109112.16675611182159105748.stgit@ltczzess4.aus.stglabs.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
vof.h requires "qom/object.h" for DECLARE_CLASS_CHECKERS(),
"exec/memory.h" for address_space_read/write(),
"exec/address-spaces.h" for address_space_memory
and more importantly "cpu.h" for target_ulong.
vof.c doesn't need "exec/ram_addr.h".
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220122003104.84391-1-f4bug@amsat.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
It is not used elsewhere so that's where it belongs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220105212338.49899-10-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The powernv machine uses the object hierarchy to populate the device
tree and each device should be parented to the chip it belongs to.
This is not the case for user created devices which are parented to
the container "/unattached".
Make sure a PHB3 device is parented to its chip by reparenting the
object if necessary.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220105212338.49899-8-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
PHB3 devices and PCI devices can now be added to the powernv8 machine
using :
-device pnv-phb3,chip-id=0,index=1 \
-device nec-usb-xhci,bus=pci.1,addr=0x0
The 'index' property identifies the PHB3 in the chip. In case of user
created devices, a lookup on 'chip-id' is required to assign the
owning chip.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220105212338.49899-7-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This cleanups the PHB3 model a bit more since the root port is an
independent device and it will ease our task when adding user created
PHB3s.
pnv_phb_attach_root_port() is made public in pnv.c so it can be reused
with the pnv_phb4 root port later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220105212338.49899-4-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
dma_memory_read() returns a MemTxResult type. Do not discard
it, return it to the caller.
Update the few callers.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20211223115554.3155328-19-philmd@redhat.com>
Let devices specify transaction attributes when calling ld*_dma().
Keep the default MEMTXATTRS_UNSPECIFIED in the few callers.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20211223115554.3155328-17-philmd@redhat.com>
Let devices specify transaction attributes when calling st*_dma().
Keep the default MEMTXATTRS_UNSPECIFIED in the few callers.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20211223115554.3155328-16-philmd@redhat.com>
Let devices specify transaction attributes when calling
dma_memory_set().
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Li Qiang <liq3ea@gmail.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20211223115554.3155328-3-philmd@redhat.com>
Let devices specify transaction attributes when calling
dma_memory_valid().
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Li Qiang <liq3ea@gmail.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20211223115554.3155328-2-philmd@redhat.com>
POWER9 processor comes with 3 PHB4 PEC (PCI Express Controller) and
each PEC can have several PHBs :
* PEC0 provides 1 PHB (PHB0)
* PEC1 provides 2 PHBs (PHB1 and PHB2)
* PEC2 provides 3 PHBs (PHB3, PHB4 and PHB5)
A num_pecs class attribute represents better the logic units of the
POWER9 chip. Use that instead of num_phbs which fits POWER8 chips.
This will ease adding support for user created devices.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-8-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
and use them to set and test the ASSERTED bit of LSI sources.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211004212141.432954-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Correct the multi-line comment format. No functional changes.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Message-Id: <20210918032653.646370-3-bin.meng@windriver.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There is no machine that uses Motorola MCP750 (aka Raven) model.
Drop the related codes.
While we are here, drop the mentioning of Intel GW80314 I/O
companion chip in the comments as it has been obsolete for years,
and correct a typo too.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Message-Id: <20210918032653.646370-2-bin.meng@windriver.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The main feature of FORM2 affinity support is the separation of NUMA
distances from ibm,associativity information. This allows for a more
flexible and straightforward NUMA distance assignment without relying on
complex associations between several levels of NUMA via
ibm,associativity matches. Another feature is its extensibility. This base
support contains the facilities for NUMA distance assignment, but in the
future more facilities will be added for latency, performance, bandwidth
and so on.
This patch implements the base FORM2 affinity support as follows:
- the use of FORM2 associativity is indicated by using bit 2 of byte 5
of ibm,architecture-vec-5. A FORM2 aware guest can choose to use FORM1
or FORM2 affinity. Setting both forms will default to FORM2. We're not
advertising FORM2 for pseries-6.1 and older machine versions to prevent
guest visible changes in those;
- ibm,associativity-reference-points has a new semantic. Instead of
being used to calculate distances via NUMA levels, it's now used to
indicate the primary domain index in the ibm,associativity domain of
each resource. In our case it's set to {0x4}, matching the position
where we already place logical_domain_id;
- two new RTAS DT artifacts are introduced: ibm,numa-lookup-index-table
and ibm,numa-distance-table. The index table is used to list all the
NUMA logical domains of the platform, in ascending order, and allows for
spartial NUMA configurations (although QEMU ATM doesn't support that).
ibm,numa-distance-table is an array that contains all the distances from
the first NUMA node to all other nodes, then the second NUMA node
distances to all other nodes and so on;
- get_max_dist_ref_points(), get_numa_assoc_size() and get_associativity()
now checks for OV5_FORM2_AFFINITY and returns FORM2 values if the guest
selected FORM2 affinity during CAS.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210920174947.556324-7-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
FORM2 NUMA affinity is prepared to deal with empty (memory/cpu less)
NUMA nodes. This is used by the DAX KMEM driver to locate a PAPR SCM
device that has a different latency than the original NUMA node from the
regular memory. FORM2 is also able to deal with asymmetric NUMA
distances gracefully, something that our FORM1 implementation doesn't
do.
Move these FORM1 verifications to a new function and wait until after
CAS, when we're sure that we're sticking with FORM1, to enforce them.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210920174947.556324-6-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Introducing a new NUMA affinity, FORM2, requires a new mechanism to
switch between affinity modes after CAS. Also, we want FORM2 data
structures and functions to be completely separated from the existing
FORM1 code, allowing us to avoid adding new code that inherits the
existing complexity of FORM1.
The idea of switching values used by the write_dt() functions in
spapr_numa.c was already introduced in the previous patch, and
the same approach will be used when dealing with the FORM1 and FORM2
arrays.
We can accomplish that by that by renaming the existing numa_assoc_array
to FORM1_assoc_array, which now is used exclusively to handle FORM1 affinity
data. A new helper get_associativity() is then introduced to be used by the
write_dt() functions to retrieve the current ibm,associativity array of
a given node, after considering affinity selection that might have been
done during CAS. All code that was using numa_assoc_array now needs to
retrieve the array by calling this function.
This will allow for an easier plug of FORM2 data later on.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210920174947.556324-5-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The next preliminary step to introduce NUMA FORM2 affinity is to make
the existing code independent of FORM1 macros and values, i.e.
MAX_DISTANCE_REF_POINTS, NUMA_ASSOC_SIZE and VCPU_ASSOC_SIZE. This patch
accomplishes that by doing the following:
- move the NUMA related macros from spapr.h to spapr_numa.c where they
are used. spapr.h gets instead a 'NUMA_NODES_MAX_NUM' macro that is used
to refer to the maximum number of NUMA nodes, including GPU nodes, that
the machine can support;
- MAX_DISTANCE_REF_POINTS and NUMA_ASSOC_SIZE are renamed to
FORM1_DIST_REF_POINTS and FORM1_NUMA_ASSOC_SIZE. These FORM1 specific
macros are used in FORM1 init functions;
- code that uses MAX_DISTANCE_REF_POINTS now retrieves the
max_dist_ref_points value using get_max_dist_ref_points().
NUMA_ASSOC_SIZE is replaced by get_numa_assoc_size() and VCPU_ASSOC_SIZE
is replaced by get_vcpu_assoc_size(). These functions are used by the
generic device tree functions and h_home_node_associativity() and will
allow them to switch between FORM1 and FORM2 without changing their core
logic.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210920174947.556324-4-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This to avoid possible conflicts with the "id" property of QOM objects.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210901094153.227671-9-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It's generic enough to be used from the XIVE2 router and avoid more
duplication.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210809134547.689560-9-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>