Commit Graph

8 Commits

Author SHA1 Message Date
Michael Tokarev
9b4b4e510b hw/other: spelling fixes
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
2023-09-21 11:31:16 +03:00
Markus Armbruster
b21e238037 Use g_new() & friends where that makes obvious sense
g_new(T, n) is neater than g_malloc(sizeof(T) * n).  It's also safer,
for two reasons.  One, it catches multiplication overflowing size_t.
Two, it returns T * rather than void *, which lets the compiler catch
more type errors.

This commit only touches allocations with size arguments of the form
sizeof(T).

Patch created mechanically with:

    $ spatch --in-place --sp-file scripts/coccinelle/use-g_new-etc.cocci \
	     --macro-file scripts/cocci-macro-file.h FILES...

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Message-Id: <20220315144156.1595462-4-armbru@redhat.com>
Reviewed-by: Pavel Dovgalyuk <Pavel.Dovgalyuk@ispras.ru>
2022-03-21 15:44:44 +01:00
Igor Mammedov
689ef4721a acpi: build_hmat: use acpi_table_begin()/acpi_table_end() instead of build_header()
it replaces error-prone pointer arithmetic for build_header() API,
with 2 calls to start and finish table creation,
which hides offsets magic from API user.

Also since acpi_table_begin() reserves space only for standard header
while previous acpi_data_push() reserved the header + 4 bytes field,
add 4 bytes 'Reserved' field into hmat_build_table_structs()
which didn have it.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Message-Id: <20210924122802.1455362-10-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-10-05 17:30:57 -04:00
Marian Postevca
602b458201 acpi: Permit OEM ID and OEM table ID fields to be changed
Qemu's ACPI table generation sets the fields OEM ID and OEM table ID
to "BOCHS " and "BXPCxxxx" where "xxxx" is replaced by the ACPI
table name.

Some games like Red Dead Redemption 2 seem to check the ACPI OEM ID
and OEM table ID for the strings "BOCHS" and "BXPC" and if they are
found, the game crashes(this may be an intentional detection
mechanism to prevent playing the game in a virtualized environment).

This patch allows you to override these default values.

The feature can be used in this manner:
qemu -machine oem-id=ABCDEF,oem-table-id=GHIJKLMN

The oem-id string can be up to 6 bytes in size, and the
oem-table-id string can be up to 8 bytes in size. If the string are
smaller than their respective sizes they will be padded with space.
If either of these parameters is not set, the current default values
will be used for the one missing.

Note that the the OEM Table ID field will not be extended with the
name of the table, but will use either the default name or the user
provided one.

This does not affect the -acpitable option (for user-defined ACPI
tables), which has precedence over -machine option.

Signed-off-by: Marian Postevca <posteuca@mutex.one>
Message-Id: <20210119003216.17637-3-posteuca@mutex.one>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-02-05 08:52:59 -05:00
Chetan Pant
61f3c91a67 nomaintainer: Fix Lesser GPL version number
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.

This patch contains all the files, whose maintainer I could not get
from ‘get_maintainer.pl’ script.

Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201023124424.20177-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
[thuth: Adapted exec.c and qdev-monitor.c to new location]
Signed-off-by: Thomas Huth <thuth@redhat.com>
2020-11-15 17:04:40 +01:00
Liu Jingqi
a9c2b841af hmat acpi: Build Memory Side Cache Information Structure(s)
This structure describes memory side cache information for memory
proximity domains if the memory side cache is present and the
physical device forms the memory side cache.
The software could use this information to effectively place
the data in memory to maximize the performance of the system
memory that use the memory side cache.

Acked-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Daniel Black <daniel@linux.ibm.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Message-Id: <20191213011929.2520-7-tao3.xu@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-01-05 07:03:03 -05:00
Liu Jingqi
4586a2cb83 hmat acpi: Build System Locality Latency and Bandwidth Information Structure(s)
This structure describes the memory access latency and bandwidth
information from various memory access initiator proximity domains.
The latency and bandwidth numbers represented in this structure
correspond to rated latency and bandwidth for the platform.
The software could use this information as hint for optimization.

Acked-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Message-Id: <20191213011929.2520-6-tao3.xu@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-01-05 07:03:03 -05:00
Liu Jingqi
e6f123c3b8 hmat acpi: Build Memory Proximity Domain Attributes Structure(s)
HMAT is defined in ACPI 6.3: 5.2.27 Heterogeneous Memory Attribute Table
(HMAT). The specification references below link:
http://www.uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf

It describes the memory attributes, such as memory side cache
attributes and bandwidth and latency details, related to the
Memory Proximity Domain. The software is
expected to use this information as hint for optimization.

This structure describes Memory Proximity Domain Attributes by memory
subsystem and its associativity with processor proximity domain as well as
hint for memory usage.

In the linux kernel, the codes in drivers/acpi/hmat/hmat.c parse and report
the platform's HMAT tables.

Acked-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Daniel Black <daniel@linux.ibm.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Message-Id: <20191213011929.2520-5-tao3.xu@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-01-05 07:03:03 -05:00