I'll use it with block backends shortly, and the name is going to fit
badly there. It's a block layer thing anyway, not just a block driver
thing.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
I'll use BlockDriverAIOCB with block backends shortly, and the name is
going to fit badly there. It's a block layer thing anyway, not just a
block driver thing.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
On a system with a low limit of open files the initialization
of the event notifier could fail and QEMU exits without printing any
error information to the user.
The problem can be easily reproduced by enforcing a low limit of open
files and start QEMU with enough I/O threads to hit this limit.
The same problem raises, without the creation of I/O threads, while
QEMU initializes the main event loop by enforcing an even lower limit of
open files.
This commit adds an error message on failure:
# qemu [...] -object iothread,id=iothread0 -object iothread,id=iothread1
qemu: Failed to initialize event notifier: Too many open files in system
Signed-off-by: Chrysostomos Nanakos <cnanakos@grnet.gr>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Now that all the implementations are converted to asynchronous version
and we can emulate synchronous cancellation with it. Let's drop the
unused member.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This is the async version of bdrv_aio_cancel, which doesn't block the
caller. It guarantees that the cb is called either before returning or
some time later.
bdrv_aio_cancel can base on bdrv_aio_cancel_async, later we can convert
all .io_cancel implementations to .io_cancel_async, and the aio_poll is
the common logic. In the end, .io_cancel can be dropped.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This will be useful in synchronous cancel emulation with
bdrv_aio_cancel_async.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Uses the same select/WSAEventSelect scheme as main-loop.c.
WSAEventSelect() is edge-triggered, so it cannot be used
directly, but it is still used as a way to exit from a
blocking g_poll().
Before g_poll() is called, we poll sockets with a non-blocking
select() to achieve the level-triggered semantics we require:
if a socket is ready, the g_poll() is made non-blocking too.
Based on a patch from Or Goshen.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This will be used to implement socket polling on Windows.
On Windows, select() and g_poll() are completely different;
sockets are polled with select() before calling g_poll,
and the g_poll must be nonblocking if select() says a
socket is ready.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
So far, aio_poll's scheme was dispatch/poll/dispatch, where
the first dispatch phase was used only in the GSource case in
order to avoid a blocking poll. Earlier patches changed it to
dispatch/prepare/poll/dispatch, where prepare is aio_compute_timeout.
By making aio_dispatch public, we can remove the first dispatch
phase altogether, so that both aio_poll and the GSource use the same
prepare/poll/dispatch scheme.
This patch breaks the invariant that aio_poll(..., true) will not block
the first time it returns false. This used to be fundamental for
qemu_aio_flush's implementation as "while (qemu_aio_wait()) {}" but
no code in QEMU relies on this invariant anymore. The return value
of aio_poll() is now comparable with that of g_main_context_iteration.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Right now, QEMU invokes aio_bh_poll before the "poll" phase
of aio_poll. It is simpler to do it afterwards and skip the
"poll" phase altogether when the OS-dependent parts of AioContext
are invoked from GSource. This way, AioContext behaves more
similarly when used as a GSource vs. when used as stand-alone.
As a start, take bottom halves into account when computing the
poll timeout. If a bottom half is ready, do a non-blocking
poll. As a side effect, this makes idle bottom halves work
with aio_poll; an improvement, but not really an important
one since they are deprecated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Currently, whenever aio_poll(ctx, true) has completed all pending
work it returns true *and* the next call to aio_poll(ctx, true)
will not block.
This invariant has its roots in qemu_aio_flush()'s implementation
as "while (qemu_aio_wait()) {}". However, qemu_aio_flush() does
not exist anymore and bdrv_drain_all() is implemented differently;
and this invariant is complicated to maintain and subtly different
from the return value of GMainLoop's g_main_context_iteration.
All calls to aio_poll(ctx, true) except one are guarded by a
while() loop checking for a request to be incomplete, or a
BlockDriverState to be idle. The one remaining call (in
iothread.c) uses this to delay the aio_context_release/acquire
pair until the AioContext is quiescent, however:
- we can do the same just by using non-blocking aio_poll,
similar to how vl.c invokes main_loop_wait
- it is buggy, because it does not ensure that the AioContext
is released between an aio_notify and the next time the
iothread goes to sleep. This leads to hangs when stopping
the dataplane thread.
In the end, these semantics are a bad match for the current
users of AioContext. So modify that one exception in iothread.c,
which also fixes the hangs, as well as the testcase so that
it use the same idiom as the actual QEMU code.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
In many cases, the call to event_notifier_set in aio_notify is unnecessary.
In particular, if we are executing aio_dispatch, or if aio_poll is not
blocking, we know that we will soon get to the next loop iteration (if
necessary); the thread that hosts the AioContext's event loop does not
need any nudging.
The patch includes a Promela formal model that shows that this really
works and does not need any further complication such as generation
counts. It needs a memory barrier though.
The generation counts are not needed because any change to
ctx->dispatching after the memory barrier is okay for aio_notify.
If it changes from zero to one, it is the right thing to skip
event_notifier_set. If it changes from one to zero, the
event_notifier_set is unnecessary but harmless.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The main AioContext should be accessed explicitly via qemu_get_aio_context().
Most of the time, using it is not the right thing to do.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
It can be useful to run an AioContext from a thread which normally does
not "own" the AioContext. For example, request draining can be
implemented by acquiring the AioContext and looping aio_poll() until all
requests have been completed.
The following pattern should work:
/* Event loop thread */
while (running) {
aio_context_acquire(ctx);
aio_poll(ctx, true);
aio_context_release(ctx);
}
/* Another thread */
aio_context_acquire(ctx);
bdrv_read(bs, 0x1000, buf, 1);
aio_context_release(ctx);
This patch implements aio_context_acquire() and aio_context_release().
Note that existing aio_poll() callers do not need to worry about
acquiring and releasing - it is only needed when multiple threads will
call aio_poll() on the same AioContext.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Add aio_timer_init and aio_timer_new wrapper functions.
Signed-off-by: Alex Bligh <alex@alex.org.uk>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Add a QEMUTimerListGroup each AioContext (meaning a QEMUTimerList
associated with each clock is added) and delete it when the
AioContext is freed.
Signed-off-by: Alex Bligh <alex@alex.org.uk>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
include/qemu/timer.h has no need to include main-loop.h and
doing so causes an issue for the next patch. Unfortunately
various files assume including timers.h will pull in main-loop.h.
Untangle this mess.
Signed-off-by: Alex Bligh <alex@alex.org.uk>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The .io_flush() handler no longer exists and has no users. Drop the
io_flush argument to aio_set_fd_handler() and related functions.
The AioFlushEventNotifierHandler and AioFlushHandler typedefs are no
longer used and are dropped too.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
BH will be used outside big lock, so introduce lock to protect
between the writers, ie, bh's adders and deleter. The lock only
affects the writers and bh's callback does not take this extra lock.
Note that for the same AioContext, aio_bh_poll() can not run in
parallel yet.
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This patch adds a ThreadPool to AioContext. It's possible that some
AioContext instances will never use the ThreadPool, so defer creation
until aio_get_thread_pool().
The reason why AioContext should have the ThreadPool is because the
ThreadPool is bound to a AioContext instance where the work item's
callback function is invoked. It doesn't make sense to keep the
ThreadPool pointer anywhere other than AioContext. For example,
block/raw-posix.c can get its AioContext's ThreadPool and submit work.
Special note about headers: I used struct ThreadPool in aio.h because
there is a circular dependency if aio.h includes thread-pool.h.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
AioHandler already has a GPollFD so we can directly use its
events/revents.
Add the int pollfds_idx field to AioContext so we can map g_poll(3)
results back to AioHandlers.
Reuse aio_dispatch() to invoke handlers after g_poll(3).
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Message-id: 1361356113-11049-10-git-send-email-stefanha@redhat.com
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
aio_poll() must return true if any work is still pending, even if it
didn't make progress, so that bdrv_drain_all() doesn't stop waiting too
early. The possibility of stopping early occasionally lead to a failed
assertion in bdrv_drain_all(), when some in-flight request was missed
and the function didn't really drain all requests.
In order to make that change, the return value as specified in the
function comment must change for blocking = false; fortunately, the
return value of blocking = false callers is only used in test cases, so
this change shouldn't cause any trouble.
Cc: qemu-stable@nongnu.org
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>