We did not correctly handle N >= operand size.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1374
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230114233206.3118472-1-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Failure to truncate the inputs results in garbage for the carry-out.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1373
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230115012103.3131796-1-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When ADCX is followed by ADOX or vice versa, the second instruction's
carry comes from EFLAGS and the condition codes use the CC_OP_ADCOX
operation. Retrieving the carry from EFLAGS is handled by this bit
of gen_ADCOX:
tcg_gen_extract_tl(carry_in, cpu_cc_src,
ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1);
Unfortunately, in this case cc_op has been overwritten by the previous
"if" statement to CC_OP_ADCOX. This works by chance when the first
instruction is ADCX; however, if the first instruction is ADOX,
ADCX will incorrectly take its carry from OF instead of CF.
Fix by moving the computation of the new cc_op at the end of the function.
The included exhaustive test case fails without this patch and passes
afterwards.
Because ADCX/ADOX need not be invoked through the VEX prefix, this
regression bisects to commit 16fc5726a6 ("target/i386: reimplement
0x0f 0x38, add AVX", 2022-10-18). However, the mistake happened a
little earlier, when BMI instructions were rewritten using the new
decoder framework.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1471
Reported-by: Paul Jolly <https://gitlab.com/myitcv>
Fixes: 1d0b926150 ("target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder", 2022-10-18)
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We forgot to set cc_src, which is used for computing C.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1370
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230114180601.2993644-1-richard.henderson@linaro.org>
Cc: qemu-stable@nongnu.org
Fixes: 1d0b926150 ("target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder", 2022-10-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There were two problems here: not limiting the input to operand bits,
and not correctly handling large extraction length.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1372
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230114230542.3116013-3-richard.henderson@linaro.org>
Cc: qemu-stable@nongnu.org
Fixes: 1d0b926150 ("target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder", 2022-10-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only issue with FMA instructions is that there are _a lot_ of them (30
opcodes, each of which comes in up to 4 versions depending on VEX.W and
VEX.L; a total of 96 possibilities). However, they can be implement with
only 6 helpers, two for scalar operations and four for packed operations.
(Scalar versions do not do any merging; they only affect the bottom 32
or 64 bits of the output operand. Therefore, there is no separate XMM
and YMM of the scalar helpers).
First, we can reduce the number of helpers to one third by passing four
operands (one output and three inputs); the reordering of which operands
go to the multiply and which go to the add is done in emit.c.
Second, the different instructions also dispatch to the same softfloat
function, so the flags for float32_muladd and float64_muladd are passed
in the helper as int arguments, with a little extra complication to
handle FMADDSUB and FMSUBADD.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
F16C only consists of two instructions, which are a bit peculiar
nevertheless.
First, they access only the low half of an YMM or XMM register for the
packed-half operand; the exact size still depends on the VEX.L flag.
This is similar to the existing avx_movx flag, but not exactly because
avx_movx is hardcoded to affect operand 2. To this end I added a "ph"
format name; it's possible to reuse this approach for the VPMOVSX and
VPMOVZX instructions, though that would also require adding two more
formats for the low-quarter and low-eighth of an operand.
Second, VCVTPS2PH is somewhat weird because it *stores* the result of
the instruction into memory rather than loading it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the destination is a memory register, op->n is -1. Going through
tcg_gen_gvec_dup_imm path is both useless (the value has been stored
by the gen_* function already) and wrong because of the out-of-bounds
access.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With all SSE (and AVX!) instructions now implemented in disas_insn_new,
it's possible to remove gen_sse, as well as the helpers for instructions
that now use gvec.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds another kind of weirdness when you thought you had seen it all:
an opcode byte that comes _after_ the address, not before. It's not
worth adding a new X86_SPECIAL_* constant for it, but it's actually
not unlike VCMP; so, forgive me for exploiting the similarity and just
deciding to dispatch to the right gen_helper_* call in a single code
generation function.
In fact, the old decoder had a bug where s->rip_offset should have
been set to 1 for 3DNow! instructions, and it's fixed now.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are exactly the same as the non-VEX version, but one has to be careful
that only VEX.L=0 is allowed.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Here the code is a bit uglier due to the truncation and extension
of registers to and from 32-bit. There is also a mistake in the
manual with respect to the size of the memory operand of CVTPS2PI
and CVTTPS2PI, reported by Ricky Zhou.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are mostly moves, and yet are a total pain. The main issue
is that:
1) some instructions are selected by mod==11 (register operand)
vs. mod=00/01/10 (memory operand)
2) stores to memory are two-operand operations, while the 3-register
and load-from-memory versions operate on the entire contents of the
destination; this makes it easier to separate the gen_* function for
the store case
3) it's inefficient to load into xmm_T0 only to move the value out
again, so the gen_* function for the load case is separated too
The manual also has various mistakes in the operands here, for example
the store case of MOVHPS operates on a 128-bit source (albeit discarding
the bottom 64 bits) and therefore should be Mq,Vdq rather than Mq,Vq.
Likewise for the destination and source of MOVHLPS.
VUNPCK?PS and VUNPCK?PD are the same as VUNPCK?DQ and VUNPCK?QDQ,
but encoded as prefixes rather than separate operands. The helpers
can be reused however.
For MOVSLDUP, MOVSHDUP and MOVDDUP I chose to reimplement them as
helpers. I named the helper for MOVDDUP "movdldup" in preparation
for possible future introduction of MOVDHDUP and to clarify the
similarity with MOVSLDUP.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nothing special going on here, for once.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are several special cases here:
1) extending moves have different widths for the helpers vs. for the
memory loads, and the width for memory loads depends on VEX.L too.
This is represented by X86_SPECIAL_AVXExtMov.
2) some instructions, such as variable-width shifts, select the vector element
size via REX.W.
3) VSIB instructions (VGATHERxPy, VPGATHERxy) are also part of this group,
and they have (among other things) two output operands.
3) the macros for 4-operand blends (which are under 0x0f 0x3a) have to be
extended to support 2-operand blends. The 2-operand variant actually
came a few years earlier, but it is clearer to implement them in the
opposite order.
X86_TYPE_WM, introduced earlier for unaligned loads, is reused for helpers
that accept a Reg* but have a M argument.
These three-byte opcodes also include AVX new instructions, for which
the helpers were originally implemented by Paul Brook <paul@nowt.org>.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As pmovmskb is used by strlen et al, this is the third
highest overhead sse operation at %0.8.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
[Reorganize to generate code for any vector size. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The more complicated operations here are insertions and extractions.
Otherwise, there are just more entries than usual because the PS/PD/SS/SD
variations are encoded in the opcode rater than in the prefixes.
These three-byte opcodes also include AVX new instructions, whose
implementation in the helpers was originally done by Paul Brook
<paul@nowt.org>.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The more complicated ones here are d6-d7, e6-e7, f7. The others
are trivial.
For LDDQU, using gen_load_sse directly might corrupt the register if
the second part of the load fails. Therefore, add a custom X86_TYPE_WM
value; like X86_TYPE_W it does call gen_load(), but it also rejects a
value of 11 in the ModRM field like X86_TYPE_M.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This includes shifts by immediate, which use bits 3-5 of the ModRM byte
as an opcode extension. With the exception of 128-bit shifts, they are
implemented using gvec.
This also covers VZEROALL and VZEROUPPER, which use the same opcode
as EMMS. If we were wanting to optimize out gen_clear_ymmh then this
would be one of the starting points. The implementation of the VZEROALL
and VZEROUPPER helpers is by Paul Brook.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are a mixed batch, including the first two horizontal
(66 and F2 only) operations, more moves, and SSE4a extract/insert.
Because SSE4a is pretty rare, I chose to leave the helper as they are,
but it is possible to unify them by loading index and length from the
source XMM register and generating deposit or extract TCG ops.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are mostly floating-point SSE operations. The odd ones out
are MOVMSK and CVTxx2yy, the others are straightforward.
Unary operations are a bit special in AVX because they have 2 operands
for PD/PS operands (VEX.vvvv must be 1111b), and 3 operands for SD/SS.
They are handled using X86_OP_GROUP3 for compactness.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are more simple integer instructions present in both MMX and SSE/AVX,
with no holes that were later occupied by newer instructions.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are both MMX and SSE/AVX instructions, except for vmovdqu. In both
cases the inputs and output is in s->ptr{0,1,2}, so the only difference
between MMX, SSE, and AVX is which helper to call.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because these are the only VEX instructions that QEMU supports, the
new decoder is entered on the first byte of a valid VEX prefix, and VEX
decoding only needs to be done in decode-new.c.inc.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add generic code generation that takes care of preparing operands
around calls to decode.e.gen in a table-driven manner, so that ALU
operations need not take care of that.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new decoder is based on three principles:
- use mostly table-driven decoding, using tables derived as much as possible
from the Intel manual. Centralizing the decode the operands makes it
more homogeneous, for example all immediates are signed. All modrm
handling is in one function, and can be shared between SSE and ALU
instructions (including XMM<->GPR instructions). The SSE/AVX decoder
will also not have duplicated code between the 0F, 0F38 and 0F3A tables.
- keep the code as "non-branchy" as possible. Generally, the code for
the new decoder is more verbose, but the control flow is simpler.
Conditionals are not nested and have small bodies. All instruction
groups are resolved even before operands are decoded, and code
generation is separated as much as possible within small functions
that only handle one instruction each.
- keep address generation and (for ALU operands) memory loads and writeback
as much in common code as possible. All ALU operations for example
are implemented as T0=f(T0,T1). For non-ALU instructions,
read-modify-write memory operations are rare, but registers do not
have TCGv equivalents: therefore, the common logic sets up pointer
temporaries with the operands, while load and writeback are handled
by gvec or by helpers.
These principles make future code review and extensibility simpler, at
the cost of having a relatively large amount of code in the form of this
patch. Even EVEX should not be _too_ hard to implement (it's just a crazy
large amount of possibilities).
This patch introduces the main decoder flow, and integrates the old
decoder with the new one. The old decoder takes care of parsing
prefixes and then optionally drops to the new one. The changes to the
old decoder are minimal and allow it to be replaced incrementally with
the new one.
There is a debugging mechanism through a "LIMIT" environment variable.
In user-mode emulation, the variable is the number of instructions
decoded by the new decoder before permanently switching to the old one.
In system emulation, the variable is the highest opcode that is decoded
by the new decoder (this is less friendly, but it's the best that can
be done without requiring deterministic execution).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>