Add a system controller for the m68k-virt machine.
This controller allows the kernel to power off or reset the machine.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20210312214145.2936082-5-laurent@vivier.eu>
This patch implements Multi Function Timer (MFT) module for NPCM7XX.
This module is mainly used to configure PWM fans. It has just enough
functionality to make the PWM fan kernel module work.
The module takes two input, the max_rpm of a fan (modifiable via QMP)
and duty cycle (a GPIO from the PWM module.) The actual measured RPM
is equal to max_rpm * duty_cycle / NPCM7XX_PWM_MAX_DUTY. The RPM is
measured as a counter compared to a prescaled input clock. The kernel
driver reads this counter and report to user space.
Refs:
https://github.com/torvalds/linux/blob/master/drivers/hwmon/npcm750-pwm-fan.c
Reviewed-by: Doug Evans <dje@google.com>
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Signed-off-by: Hao Wu <wuhaotsh@google.com>
Message-id: 20210311180855.149764-3-wuhaotsh@google.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add a model of the Xilinx Versal Accelerator RAM (XRAM).
This is mainly a stub to make firmware happy. The size of
the RAMs can be probed. The interrupt mask logic is
modelled but none of the interrups will ever be raised
unless injected.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20210308224637.2949533-2-edgar.iglesias@gmail.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
* New model for the Aspeed LPC controller
* Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEoPZlSPBIlev+awtgUaNDx8/77KEFAmBHYfEACgkQUaNDx8/7
7KF1Og/+Nhg+2Yp0YTOJPDyg+dzsBBiESe6VU7dMczhVlLo9p/6vIpLFTdC0B0AH
GOGa6rhz91AN/smTv3ANv7cj43jlFrT3m9ce4h+m8FANqGfcfU0FxVhf63+VbLqv
GrKNjnYtqimvuhuIvdbQVbDnl5jwrLJGiNkxTPTFRUjwCKXvzQwhYZukUxhN+d8/
iTsZR75rvgr73OURt0F8y4Bk6WT/COdxoBpFq4hqVcgCwv+ug+TcxNvQCrMssDrB
k01rRsj1Y+bRzD5egy/okMbKYnNeFAUu+3525OzueorUjftuzjQvx4MBcBf+LpRy
5QX5eC4bkuIpVTju6Im78IcRTLZ7bjgjPl8vJVjb8l2jnbGNjb9I5BELA8+//WhU
2JwQWTHFFdHXQZQ9PXFumLL7J2KYGuZCnY78Iaa0gL3p0fFFrhIQz+76Y0fBxRLw
v17ioCkOO1+rJ26Dus3H6FOS0FK/AyzXebLZtddYR8iV/7hYvF955r2ZDqSj0klB
TrUEiTU5vNhS+OI8xIoR/YVtu+vzckLEz8KPFFwMZcrPAPbuNwsLvM/WycppjE/Z
gHRgqOfL0IP40iJq35T3E1lakn/s3/i/kJnc+u4XGdq1PEALLYdOjEjfqRHcPHer
3EO+osSKNe08Sffb4LVFsBxjsbVvc2Sb4Lg1r3bX9LgnfU6nD7A=
=SWwQ
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/legoater/tags/pull-aspeed-20210309' into staging
Aspeed patches :
* New model for the Aspeed LPC controller
* Misc cleanups
# gpg: Signature made Tue 09 Mar 2021 11:54:25 GMT
# gpg: using RSA key A0F66548F04895EBFE6B0B6051A343C7CFFBECA1
# gpg: Good signature from "Cédric Le Goater <clg@kaod.org>" [undefined]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: A0F6 6548 F048 95EB FE6B 0B60 51A3 43C7 CFFB ECA1
* remotes/legoater/tags/pull-aspeed-20210309:
hw/misc: Model KCS devices in the Aspeed LPC controller
hw/misc: Add a basic Aspeed LPC controller model
hw/arm: ast2600: Correct the iBT interrupt ID
hw/arm: ast2600: Set AST2600_MAX_IRQ to value from datasheet
hw/arm: ast2600: Force a multiple of 32 of IRQs for the GIC
hw/arm/aspeed: Fix location of firmware images in documentation
arm/ast2600: Fix SMP booting with -kernel
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is a very minimal framework to access registers which are used to
configure the AHB memory mapping of the flash chips on the LPC HC
Firmware address space.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Message-Id: <20210302014317.915120-5-andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The SSE-300 has a new register block CPU<N>_PWRCTRL. There is one
instance of this per CPU in the system (so just one for the SSE-300),
and as well as the usual CIDR/PIDR ID registers it has just one
register, CPUPWRCFG. This register allows the guest to configure
behaviour of the system in power-down and deep-sleep states. Since
QEMU does not model those, we make the register a dummy
reads-as-written implementation.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210219144617.4782-21-peter.maydell@linaro.org
Add PCI interface support for PVPANIC device. Create a new file pvpanic-pci.c
where the PCI specific routines reside and update the build system with the new
files and config structure.
Signed-off-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
To ease the PCI device addition in next patches, split the code as follows:
- generic code (read/write/setup) is being kept in pvpanic.c
- ISA dependent code moved to pvpanic-isa.c
Also, rename:
- ISA_PVPANIC_DEVICE -> PVPANIC_ISA_DEVICE.
- TYPE_PVPANIC -> TYPE_PVPANIC_ISA.
- MemoryRegion io -> mr.
- pvpanic_ioport_* in pvpanic_*.
Update the build system with the new files and config structure.
Signed-off-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The PWM module is part of NPCM7XX module. Each NPCM7XX module has two
identical PWM modules. Each module contains 4 PWM entries. Each PWM has
two outputs: frequency and duty_cycle. Both are computed using inputs
from software side.
This module does not model detail pulse signals since it is expensive.
It also does not model interrupts and watchdogs that are dependant on
the detail models. The interfaces for these are left in the module so
that anyone in need for these functionalities can implement on their
own.
The user can read the duty cycle and frequency using qom-get command.
Reviewed-by: Havard Skinnemoen <hskinnemoen@google.com>
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Signed-off-by: Hao Wu <wuhaotsh@google.com>
Message-id: 20210108190945.949196-5-wuhaotsh@google.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Largely inspired by the TMP421 temperature sensor, here is a model for
the EMC1413/EMC1414 temperature sensors.
Specs can be found here :
http://ww1.microchip.com/downloads/en/DeviceDoc/20005274A.pdf
Signed-off-by: John Wang <wangzhiqiang.bj@bytedance.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20201122105134.671-1-wangzhiqiang.bj@bytedance.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This creates a minimum model for Microchip PolarFire SoC SYSREG
module. It only implements the ENVM_CR register to tell guest
software that eNVM is running at the configured divider rate.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 1603863010-15807-7-git-send-email-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This creates a model for PolarFire SoC IOSCB [1] module. It actually
contains lots of sub-modules like various PLLs to control different
peripherals. Only the mininum capabilities are emulated to make the
HSS DDR memory initialization codes happy. Lots of sub-modules are
created as an unimplemented devices.
[1] PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm in
https://www.microsemi.com/document-portal/doc_download/1244581-polarfire-soc-register-map
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 1603863010-15807-5-git-send-email-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
The PolarFire SoC DDR Memory Controller mainly includes 2 modules,
called SGMII PHY module and the CFG module, as documented in the
chipset datasheet.
This creates a single file that groups these 2 modules, providing
the minimum functionalities that make the HSS DDR initialization
codes happy.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 1603863010-15807-3-git-send-email-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
The BCM2835 CPRMAN is the clock manager of the SoC. It is composed of a
main oscillator, and several sub-components (PLLs, multiplexers, ...) to
generate the BCM2835 clock tree.
This commit adds a skeleton of the CPRMAN, with a dummy register
read/write implementation. It embeds the main oscillator (xosc) from
which all the clocks will be derived.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Luc Michel <luc@lmichel.fr>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The RNG module returns a byte of randomness when the Data Valid bit is
set.
This implementation ignores the prescaler setting, and loads a new value
into RNGD every time RNGCS is read while the RNG is enabled and random
data is available.
A qtest featuring some simple randomness tests is included.
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Havard Skinnemoen <hskinnemoen@google.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add a LED device which can be connected to a GPIO output.
They can also be dimmed with PWM devices. For now we do
not implement the dimmed mode, but in preparation of a
future implementation, we start using the LED intensity.
LEDs are limited to a fixed set of colors.
Reviewed-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20200912134041.946260-2-f4bug@amsat.org>
Enough functionality to boot the Linux kernel has been implemented. This
includes:
- Correct power-on reset values so the various clock rates can be
accurately calculated.
- Clock enables stick around when written.
In addition, a best effort attempt to implement SECCNT and CNTR25M was
made even though I don't think the kernel needs them.
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Alexander Bulekov <alxndr@bu.edu>
Signed-off-by: Havard Skinnemoen <hskinnemoen@google.com>
Message-id: 20200911052101.2602693-3-hskinnemoen@google.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement a device model for the System Global Control Registers in the
NPCM730 and NPCM750 BMC SoCs.
This is primarily used to enable SMP boot (the boot ROM spins reading
the SCRPAD register) and DDR memory initialization; other registers are
best effort for now.
The reset values of the MDLR and PWRON registers are determined by the
SoC variant (730 vs 750) and board straps respectively.
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Alexander Bulekov <alxndr@bu.edu>
Signed-off-by: Havard Skinnemoen <hskinnemoen@google.com>
Message-id: 20200911052101.2602693-2-hskinnemoen@google.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is an effort to clean up the hw/riscv directory. Ideally it
should only contain the RISC-V SoC / machine codes plus generic
codes. Let's move sifive_test model to hw/misc directory.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1599129623-68957-10-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This is an effort to clean up the hw/riscv directory. Ideally it
should only contain the RISC-V SoC / machine codes plus generic
codes. Let's move sifive_u_otp model to hw/misc directory.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1599129623-68957-4-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This is an effort to clean up the hw/riscv directory. Ideally it
should only contain the RISC-V SoC / machine codes plus generic
codes. Let's move sifive_u_prci model to hw/misc directory.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1599129623-68957-3-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This is an effort to clean up the hw/riscv directory. Ideally it
should only contain the RISC-V SoC / machine codes plus generic
codes. Let's move sifive_e_prci model to hw/misc directory.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1599129623-68957-2-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
A difference between sbsa platform and the virt platform is PSCI is
handled by ARM-TF in the sbsa platform. This means that the PSCI code
there needs to communicate some of the platform power changes down
to the qemu code for things like shutdown/reset control.
Space has been left to extend the EC if we find other use cases in
future where ARM-TF and qemu need to communicate.
Signed-off-by: Graeme Gregory <graeme@nuviainc.com>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
Tested-by: Leif Lindholm <leif@nuviainc.com>
Message-id: 20200826141952.136164-2-graeme@nuviainc.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>