ehci_state_executing does not need to check for p->usb_status == USB_RET_ASYNC
or USB_RET_PROCERR, since ehci_execute_complete already does a similar check
and will trigger an assert if either value is encountered.
USB_RET_ASYNC should never be the packet status when execute_complete runs
for obvious reasons, and USB_RET_PROCERR is only used by ehci_state_execute /
ehci_execute not by ehci_state_executing / ehci_execute_complete.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
ehci_qh_do_overlay() already calls ehci_flush_qh() before it returns, calling
it twice is useless.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
After the "ehci: Print a warning when a queue unexpectedly contains packets
on cancel" commit. Under certain reproducable conditions I was getting the
following message: "EHCI: Warning queue not empty on queue reset".
After aprox. 8 hours of debugging I've finally found the cause. The Linux EHCI
driver has an IAAD watchdog, to work around certain EHCI hardware sometimes
not acknowledging the doorbell at all. This watchdog has a timeout of 10 ms,
which is less then the time between 2 runs through the async schedule when
async_stepdown is at its highest value.
Thus the watchdog can trigger, after which Linux clears the IAAD bit and
re-uses the QH. IOW we were not properly detecting the unlink of the qh, due
to us missing (ignoring for more then 10 ms) the IAAD command, which triggered
the warning.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
This patch adds IDs to usb packets. Those IDs are (a) supposed to be
unique for the lifecycle of a packet (from packet setup until the packet
is either completed or canceled) and (b) stable across migration.
uhci, ohci, ehci and xhci use the guest physical address of the transfer
descriptor for this.
musb needs a different approach because there is no transfer descriptor.
But musb also doesn't support pipelining, so we have never more than one
packet per endpoint in flight. So we go create an ID based on endpoint
and device address.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
For controllers which queue up more then 1 packet at a time, we must halt the
ep queue, and inside the controller code cancel all pending packets on an
error.
There are multiple reasons for this:
1) Guests expect the controllers to halt ep queues on error, so that they
get the opportunity to cancel transfers which the scheduled after the failing
one, before processing continues
2) Not cancelling queued up packets after a failed transfer also messes up
the controller state machine, in the case of EHCI causing the following
assert to trigger: "assert(p->qtdaddr == q->qtdaddr)" at hcd-ehci.c:2075
3) For bulk endpoints with pipelining enabled (redirection to a real USB
device), we must cancel all the transfers after this a failed one so that:
a) If they've completed already, they are not processed further causing more
stalls to be reported, originating from the same failed transfer
b) If still in flight, they are cancelled before the guest does
a clear stall, otherwise the guest and device can loose sync!
Note this patch only touches the ehci and uhci controller changes, since AFAIK
no other controllers actually queue up multiple transfer. If I'm wrong on this
other controllers need to be updated too!
Also note that this patch was heavily tested with the ehci code, where I had
a reproducer for a device causing a transfer to fail. The uhci code is not
tested with actually failing transfers and could do with a thorough review!
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
This fixes linux guests started without any USB devices not seeing newly
plugged devices until "lsusb" is done inside the guest.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
First, not all interrupts are subject to Interrupt Threshold Control,
some of them must be delivered without delay.
Second, Interrupt Threshold Control state must be part of vmstate,
otherwise we might loose IRQs on migration.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Move down the expire time calculation down in the frame timer, to the
point where the timer is actually reloaded. This way we'll notice any
async_stepdown changes (especially resetting to 0 due to usb activity).
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
With the async schedule being kicked from other places than the frame
timer (commit 0f588df8b3) it may happen
that we call ehci_commit_interrupt() more than once per frame.
Move the call from the async schedule handler to the frame timer to
restore old irq behavior, which is more correct. Fixes regressions
with some linux kernel versions.
TODO: implement full Interrupt Threshold Control support.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Commit 0f588df8b3, added code
to ehci_wakeup to kick the async schedule on wakeup, but the else
was positioned wrong making it trigger for devices which are routed
to the companion rather then to the ehci controller itself.
This patch fixes this. Note that the "programming style" with using the
return at the end of the companion block matches how the companion case
is handled in the other ports ops, and is done this way for consistency.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
hcd-ehci.c is missing an usb_packet_init() call for the ipacket UsbPacket
it uses for isoc transfers, triggering an assert (taking the entire vm down)
in usb_packet_setup as soon as any isoc transfers are done by a high speed
USB device.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Commit 4be23939ab makes ehci instantly
zap any unlinked queue heads when the guest rings the doorbell.
While hacking up uas support this turned out to be a problem. The linux
kernel can unlink and instantly relink the very same queue head, thereby
killing any async packets in flight. That alone isn't an issue yet, the
packet will canceled and resubmitted and everything is fine. We'll run
into trouble though in case the async packet is completed already, so we
can't cancel it any more. The transaction is simply lost then.
usb_ehci_qh_ptrs q (nil) - QH @ 39c4f000: next 39c4f122 qtds 00000000,00000001,39c50000
usb_ehci_qh_fields QH @ 39c4f000 - rl 0, mplen 0, eps 0, ep 0, dev 0
usb_ehci_qh_ptrs q 0x7f95feba90a0 - QH @ 39c4f000: next 39c4f122 qtds 00000000,00000001,39c50000
usb_ehci_qh_fields QH @ 39c4f000 - rl 0, mplen 0, eps 0, ep 0, dev 0
usb_ehci_qh_ptrs q 0x7f95fe515210 - QH @ 39c4f120: next 39c4f0c2 qtds 29dbce40,29dbc4e0,00000009
usb_ehci_qh_fields QH @ 39c4f120 - rl 4, mplen 512, eps 2, ep 1, dev 2
usb_ehci_packet_action q 0x7f95fe515210 p 0x7f95fdec32a0: alloc
usb_packet_state_change bus 0, port 2, ep 1, packet 0x7f95fdec32e0, state undef -> setup
usb_ehci_packet_action q 0x7f95fe515210 p 0x7f95fdec32a0: process
usb_uas_command dev 2, tag 0x2, lun 0, lun64 00000000-00000000
scsi_req_parsed target 0 lun 0 tag 2 command 42 dir 2 length 16384
scsi_req_parsed_lba target 0 lun 0 tag 2 command 42 lba 5933312
scsi_req_alloc target 0 lun 0 tag 2
scsi_req_continue target 0 lun 0 tag 2
scsi_req_data target 0 lun 0 tag 2 len 16384
usb_uas_scsi_data dev 2, tag 0x2, bytes 16384
usb_uas_write_ready dev 2, tag 0x2
usb_packet_state_change bus 0, port 2, ep 1, packet 0x7f95fdec32e0, state setup -> complete
usb_ehci_packet_action q 0x7f95fe515210 p 0x7f95fdec32a0: free
usb_ehci_qh_ptrs q 0x7f95fdec3210 - QH @ 39c4f0c0: next 39c4f002 qtds 29dbce40,00000001,00000009
usb_ehci_qh_fields QH @ 39c4f0c0 - rl 4, mplen 512, eps 2, ep 2, dev 2
usb_ehci_queue_action q 0x7f95fe5152a0: free
usb_packet_state_change bus 0, port 2, ep 2, packet 0x7f95feba9170, state async -> complete
^^^ async packets completes.
usb_ehci_packet_action q 0x7f95fdec3210 p 0x7f95feba9130: wakeup
usb_ehci_qh_ptrs q (nil) - QH @ 39c4f000: next 39c4f122 qtds 00000000,00000001,39c50000
usb_ehci_qh_fields QH @ 39c4f000 - rl 0, mplen 0, eps 0, ep 0, dev 0
usb_ehci_qh_ptrs q 0x7f95feba90a0 - QH @ 39c4f000: next 39c4f122 qtds 00000000,00000001,39c50000
usb_ehci_qh_fields QH @ 39c4f000 - rl 0, mplen 0, eps 0, ep 0, dev 0
usb_ehci_qh_ptrs q 0x7f95fe515210 - QH @ 39c4f120: next 39c4f002 qtds 29dbc4e0,29dbc8a0,00000009
usb_ehci_qh_fields QH @ 39c4f120 - rl 4, mplen 512, eps 2, ep 1, dev 2
usb_ehci_queue_action q 0x7f95fdec3210: free
usb_ehci_packet_action q 0x7f95fdec3210 p 0x7f95feba9130: free
^^^ endpoint #2 queue head removed from schedule, doorbell makes ehci zap the queue,
the (completed) usb packet is freed too and gets lost.
usb_ehci_qh_ptrs q (nil) - QH @ 39c4f000: next 39c4f0c2 qtds 00000000,00000001,39c50000
usb_ehci_qh_fields QH @ 39c4f000 - rl 0, mplen 0, eps 0, ep 0, dev 0
usb_ehci_qh_ptrs q 0x7f95feba90a0 - QH @ 39c4f000: next 39c4f0c2 qtds 00000000,00000001,39c50000
usb_ehci_qh_fields QH @ 39c4f000 - rl 0, mplen 0, eps 0, ep 0, dev 0
usb_ehci_queue_action q 0x7f9600dff570: alloc
usb_ehci_qh_ptrs q 0x7f9600dff570 - QH @ 39c4f0c0: next 39c4f122 qtds 29dbce40,00000001,00000009
usb_ehci_qh_fields QH @ 39c4f0c0 - rl 4, mplen 512, eps 2, ep 2, dev 2
usb_ehci_packet_action q 0x7f9600dff570 p 0x7f95feba9130: alloc
usb_packet_state_change bus 0, port 2, ep 2, packet 0x7f95feba9170, state undef -> setup
usb_ehci_packet_action q 0x7f9600dff570 p 0x7f95feba9130: process
usb_packet_state_change bus 0, port 2, ep 2, packet 0x7f95feba9170, state setup -> async
usb_ehci_packet_action q 0x7f9600dff570 p 0x7f95feba9130: async
^^^ linux kernel relinked the queue head, ehci creates a new usb packet,
but we should have delivered the completed one instead.
usb_ehci_qh_ptrs q 0x7f95fe515210 - QH @ 39c4f120: next 39c4f002 qtds 29dbc4e0,29dbc8a0,00000009
usb_ehci_qh_fields QH @ 39c4f120 - rl 4, mplen 512, eps 2, ep 1, dev 2
So instead of instantly zapping the queue we'll set a flag that the
queue needs revalidation in case we'll see it again in the schedule.
ehci then checks that the queue head fields addressing / describing the
endpoint and the qtd pointer match the cached content before reusing it.
Cc: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Only write back the dwords the hc is supposed to update. Should not
make a difference in theory as the guest must not touch the td while
it is active to avoid races. But it is still more correct.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
The USB UHCI and EHCI drivers were converted some time ago to use the
pci_dma_*() helper functions. However, this conversion was not complete
because in some places both these drivers do DMA via the usb_packet_map()
function in usb-libhw.c. That function directly used
cpu_physical_memory_map().
Now that the sglist code uses DMA wrappers properly, we can convert the
functions in usb-libhw.c, thus conpleting the conversion of UHCI and EHCI
to use the DMA wrappers.
Note that usb_packet_map() invokes dma_memory_map() with a NULL invalidate
callback function. When IOMMU support is added, this will mean that
usb_packet_map() and the corresponding usb_packet_unmap() must be called in
close proximity without dropping the qemu device lock - otherwise the guest
might invalidate IOMMU mappings while they are still in use by the device
code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Move the framecount check out of the loop and use the new
ehci_update_frindex function to skip frames if needed.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Adapt the frame timer sleeps according to the actual needs. With the
periodic schedule being active we'll have to wakeup 1000 times per
second and go check for work. In case only the async schedule is active
we can be more lazy though. When idle ehci will increate the sleep time
step by step, so qemu has to wake up less frequently. When we'll see
transactions on the bus or the guest fiddles with the schedule
enable/disable bits we'll return to a 1000 Hz wakeup rate and full
speed. With both schedules disabled we stop wakeups altogether.
This patch also drops the freq property (configures wakeup rate
manually) which is obsoleted by this patch.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
When the enable bits for controller / async schedule / periodic schedule
change just make sure we kick the frame timer and let
ehci_advance_periodic_state and ehci_advance_async_state handle the
controller state changes.
This will make ehci set USBSTS_HALT when the controller shutdown is
actually done, once both schedules are in inactive state and the
USBSTS_PSS and USBSTS_ASS bits are clear.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Update the status register in the ehci_set_state function, to make sure
the guest-visible register is in sync with our internal schedule state.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Add helper functions to query whenever the async / periodic schedule
is enabled or not. Put them into use too.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Check for the reset bit first when processing USBCMD register writes.
Also break out of the switch, there is no need to check the other bits.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
When a packet completes which happens to be part of the async schedule
kick the async bottom half for processing,
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Keep track whenever a EHCIQueue is part of the async or periodic
schedule. This way we don't have to pass around the async flag
everywhere but can look it up from the EHCIQueue struct when needed.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Add packet queuing. Follow the qTD chain to see if there are more
packets we can submit. Improves performance on larger transfers,
especially with usb-host, as we don't have to wait for a packet to
finish before sending the next one to the host for processing.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Keep a USBDevice pointer in EHCIQueue so we don't have to lookup the
device on each usb packet submission.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
This way it is possible to use ehci_execute to submit others than the
first EHCIPacket of the EHCIQueue.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Add a separate EHCIPacket struct and move fields over from EHCIQueue.
Preparing for supporting multiple packets per queue being in flight at
the same time. No functional changes yet.
Fix some codestyle issues along the way.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
These were identified using: http://github.com/lyda/misspell-check
and run like this to create a bourne shell script using GNU sed's
-i option:
git ls-files|grep -vF .bin | misspellings -f - |grep -v '^ERROR:' |perl \
-pe 's/^(.*?)\[(\d+)\]: (\w+) -> "(.*?)"$/sed -i '\''${2}s!$3!$4!'\'' $1/'
Manually eliding the FP, "rela->real" and resolving "addres" to
address (not "adders") we get this:
sed -i '450s!thru!through!' Changelog
sed -i '260s!neccessary!necessary!' coroutine-sigaltstack.c
sed -i '54s!miniscule!minuscule!' disas.c
sed -i '1094s!thru!through!' hw/usb/hcd-ehci.c
sed -i '1095s!thru!through!' hw/usb/hcd-ehci.c
sed -i '21s!unecessary!unnecessary!' qapi-schema-guest.json
sed -i '307s!explictly!explicitly!' qemu-ga.c
sed -i '490s!preceeding!preceding!' qga/commands-posix.c
sed -i '792s!addres!address!' qga/commands-posix.c
sed -i '6s!beeing!being!' tests/tcg/test-mmap.c
Also, manually fix "arithmentic", spotted by Peter Maydell:
sed -i 's!arithmentic!arithmetic!' coroutine-sigaltstack.c
Signed-off-by: Jim Meyering <meyering@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
frindex is a 14 bits counter, so bits 31-14 should always be 0, and
after the commit titled "usb-ehci: frindex always is a 14 bits counter"
we rely on frindex always being a multiple of 8. I've not seen this in
practice, but theoretically a guest can write a value >= 0x4000 or a value
which is not a multiple of 8 value to frindex, this patch ensures that
things will still work when that happens.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
To answer the question in the comment removed by this patch: I think
this was needed because several places in the ehci emulation did not
check the T bit of link entries correctly and thus might have followed
invalid references. See commit 2a5ff735dc
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Not sure what the purpose of the assert() was, in any case it is bogous.
We can arrive there if transfer descriptors passed to us from the guest
failed to pass sanity checks, i.e. it is guest-triggerable. We deal
with that case by resetting the host controller. Everything is ok, no
need to throw a core dump here.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
The sofv value only ever gets a value assigned and is never used (read)
anywhere, so we can just drop it.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
frindex always is a 14 bits counter, and not a 13 bits one as we were
emulating. There are some subtle hints to this in the spec, first of all
"Table 2-12. FRINDEX - Frame Index Register" says:
"Bit 13:0 Frame Index. The value in this register increments at the end of
each time frame (e.g. micro-frame). Bits [N:3] are used for the Frame List
current index. This means that each location of the frame list is accessed
8 times (frames or micro-frames) before moving to the next index. The
following illustrates values of N based on the value of the Frame List
Size field in the USBCMD register.
USBCMD[Frame List Size] Number Elements N
00b 1024 12
01b 512 11
10b 256 10
11b Reserved"
Notice how the text talks about "Bits [N:3]" are used ..., it does
NOT say that when N == 12 (our case) the counter will wrap from 8191 to 0,
or in otherwords that it is a 13 bits counter (bits 0 - 12).
The other hint is in "Table 2-10. USBSTS USB Status Register Bit Definitions":
"Bit 3 Frame List Rollover - R/WC. The Host Controller sets this bit to a one
when the Frame List Index (see Section 2.3.4) rolls over from its maximum value
to zero. The exact value at which the rollover occurs depends on the frame
list size. For example, if the frame list size (as programmed in the Frame
List Size field of the USBCMD register) is 1024, the Frame Index Register
rolls over every time FRINDEX[13] toggles. Similarly, if the size is 512,
the Host Controller sets this bit to a one every time FRINDEX[12] toggles."
Notice how this text talks about setting bit 3 when bit 13 of frindex toggles
(when there are 1024 entries, so our case), so this indicates that frindex
has a bit 13 making it a 14 bit counter.
Besides these clear hints the real proof is in the pudding. Before this
patch I could not stream data from a USB2 webcam under Windows XP, after
this cam using a USB2 webcam under Windows XP works fine, and no regressions
with other operating systems were seen.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Looks like a cut+paste bug from ehci_detach. When the device itself is
detached from a ehci port (ehci_detach op) we have to clear the
device pointer for the companion port too. When a device gets removed
from a downstream port of a usb hub (ehci_child_detach op) the ehci port
where the usb hub is plugged in is not affected.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reorganize usb source files. Create a new hw/usb/ directory and move
all usb source code to that place. Also make filenames a bit more
descriptive. Host adapters are prefixed with "hch-" now, usb device
emulations are prefixed with "dev-". Fixup paths Makefile and include
paths to make it compile. No code changes.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>