sparse-mem.c is added to the 'mem_ss' source set, which itself
is conditionally added to softmmu_ss if CONFIG_MEM_DEVICE is
selected.
But if CONFIG_MEM_DEVICE isn't selected, we get a link failure
even if CONFIG_FUZZ is selected:
/usr/bin/ld: tests_qtest_fuzz_generic_fuzz.c.o: in function `generic_pre_fuzz':
tests/qtest/fuzz/generic_fuzz.c:826: undefined reference to `sparse_mem_init'
clang-10: error: linker command failed with exit code 1 (use -v to see invocation)
Fix by adding sparse-mem.c directly to the softmmu_ss set.
Fixes: 230376d285 ("memory: add a sparse memory device for fuzzing")
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alexander Bulekov <alxndr@bu.edu>
Message-Id: <20210406133944.4193691-1-philmd@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
For testing, it can be useful to simulate an enormous amount of memory
(e.g. 2^64 RAM). This adds an MMIO device that acts as sparse memory.
When something writes a nonzero value to a sparse-mem address, we
allocate a block of memory. For now, since the only user of this device
is the fuzzer, we do not track and free zeroed blocks. The device has a
very low priority (so it can be mapped beneath actual RAM, and virtual
device MMIO regions).
Signed-off-by: Alexander Bulekov <alxndr@bu.edu>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This just implements the bare minimum to cause the boot block to skip
memory initialization.
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Alexander Bulekov <alxndr@bu.edu>
Signed-off-by: Havard Skinnemoen <hskinnemoen@google.com>
Message-id: 20200911052101.2602693-10-hskinnemoen@google.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>