The XSCOM base address of the core chiplet was wrongly calculated. Use
the OPAL macros to fix that and do a couple of renames.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These are useful when instantiating device models which are shared
between the POWER8 and the POWER9 processor families.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When addressed by XSCOM, the first core has the 0x20 chiplet ID but
the CPU PIR can start at 0x0.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
commit 1ed9c8af50 ("target/ppc: Add POWER9 DD2.0 model information")
deprecated the POWER9 model v1.0.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
fa98fbfc "PC: KVM: Support machine option to set VSMT mode" introduced the
"vsmt" parameter for the pseries machine type, which controls the spacing
of the vcpu ids of thread 0 for each virtual core. This was done to bring
some consistency and stability to how that was done, while still allowing
backwards compatibility for migration and otherwise.
The default value we used for vsmt was set to the max of the host's
advertised default number of threads and the number of vthreads per vcore
in the guest. This was done to continue running without extra parameters
on older KVM versions which don't allow the VSMT value to be changed.
Unfortunately, even that smaller than before leakage of host configuration
into guest visible configuration still breaks things. Specifically a guest
with 4 (or less) vthread/vcore will get a different vsmt value when
running on a POWER8 (vsmt==8) and POWER9 (vsmt==4) host. That means the
vcpu ids don't line up so you can't migrate between them, though you should
be able to.
Long term we really want to make vsmt == smp_threads for sufficiently
new machine types. However, that means that qemu will then require a
sufficiently recent KVM (one which supports changing VSMT) - that's still
not widely enough deployed to be really comfortable to do.
In the meantime we need some default that will work as often as
possible. This patch changes that default to 8 in all circumstances.
This does change guest visible behaviour (including for existing
machine versions) for many cases - just not the most common/important
case.
Following is case by case justification for why this is still the least
worst option. Note that any of the old behaviours can still be duplicated
after this patch, it's just that it requires manual intervention by
setting the vsmt property on the command line.
KVM HV on POWER8 host:
This is the overwhelmingly common case in production setups, and is
unchanged by design. POWER8 hosts will advertise a default VSMT mode
of 8, and > 8 vthreads/vcore isn't permitted
KVM HV on POWER7 host:
Will break, but POWER7s allowing KVM were never released to the public.
KVM HV on POWER9 host:
Not yet released to the public, breaking this now will reduce other
breakage later.
KVM HV on PowerPC 970:
Will theoretically break it, but it was barely supported to begin with
and already required various user visible hacks to work. Also so old
that I just don't care.
TCG:
This is the nastiest one; it means migration of TCG guests (without
manual vsmt setting) will break. Since TCG is rarely used in production
I think this is worth it for the other benefits. It does also remove
one more barrier to TCG<->KVM migration which could be interesting for
debugging applications.
KVM PR:
As with TCG, this will break migration of existing configurations,
without adding extra manual vsmt options. As with TCG, it is rare in
production so I think the benefits outweigh breakages.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
At present if we require a vsmt mode that's not equal to the kernel's
default, and the kernel doesn't let us change it (e.g. because it's an old
kernel without support) then we always fail.
But in fact we can cope with the kernel having a different vsmt as long as
a) it's >= the actual number of vthreads/vcore (so that guest threads
that are supposed to be on the same core act like it)
b) it's a submultiple of the requested vsmt mode (so that guest threads
spaced by the vsmt value will act like they're on different cores)
Allowing this case gives us a bit more freedom to adjust the vsmt behaviour
without breaking existing cases.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Tested-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
We recently had some discussions that were sidetracked for a while, because
nearly everyone misapprehended the purpose of the 'max_threads' field in
the compatiblity modes table. It's all about guest expectations, not host
expectations or support (that's handled elsewhere).
In an attempt to avoid a repeat of that confusion, rename the field to
'max_vthreads' and add an explanatory comment.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
The options field here is intended to list the available values for the
capability. It's not used yet, because the existing capabilities are
boolean.
We're going to add capabilities that aren't, but in that case the info on
the possible values can be folded into the .description field.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently spapr_caps are tied to boolean values (on or off). This patch
reworks the caps so that they can have any uint8 value. This allows more
capabilities with various values to be represented in the same way
internally. Capabilities are numbered in ascending order. The internal
representation of capability values is an array of uint8s in the
sPAPRMachineState, indexed by capability number.
Capabilities can have their own name, description, options, getter and
setter functions, type and allow functions. They also each have their own
section in the migration stream. Capabilities are only migrated if they
were explictly set on the command line, with the assumption that
otherwise the default will match.
On migration we ensure that the capability value on the destination
is greater than or equal to the capability value from the source. So
long at this remains the case then the migration is considered
compatible and allowed to continue.
This patch implements generic getter and setter functions for boolean
capabilities. It also converts the existings cap-htm, cap-vsx and
cap-dfp capabilities to this new format.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Decimal Floating Point has been available on POWER7 and later (server)
cpus. However, it can be disabled on the hypervisor, meaning that it's
not available to guests.
We currently handle this by conditionally advertising DFP support in the
device tree depending on whether the guest CPU model supports it - which
can also depend on what's allowed in the host for -cpu host. That can lead
to confusion on migration, since host properties are silently affecting
guest visible properties.
This patch handles it by treating it as an optional capability for the
pseries machine type.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
We currently have some conditionals in the spapr device tree code to decide
whether or not to advertise the availability of the VMX (aka Altivec) and
VSX vector extensions to the guest, based on whether the guest cpu has
those features.
This can lead to confusion and subtle failures on migration, since it makes
a guest visible change based only on host capabilities. We now have a
better mechanism for this, in spapr capabilities flags, which explicitly
depend on user options rather than host capabilities.
Rework the advertisement of VSX and VMX based on a new VSX capability. We
no longer bother with a conditional for VMX support, because every CPU
that's ever been supported by the pseries machine type supports VMX.
NOTE: Some userspace distributions (e.g. RHEL7.4) already rely on
availability of VSX in libc, so using cap-vsx=off may lead to a fatal
SIGILL in init.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Now that the "pseries" machine type implements optional capabilities (well,
one so far) there's the possibility of having different capabilities
available at either end of a migration. Although arguably a user error,
it would be nice to catch this situation and fail as gracefully as we can.
This adds code to migrate the capabilities flags. These aren't pulled
directly into the destination's configuration since what the user has
specified on the destination command line should take precedence. However,
they are checked against the destination capabilities.
If the source was using a capability which is absent on the destination,
we fail the migration, since that could easily cause a guest crash or other
bad behaviour. If the source lacked a capability which is present on the
destination we warn, but allow the migration to proceed.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
This adds an spapr capability bit for Hardware Transactional Memory. It is
enabled by default for pseries-2.11 and earlier machine types. with POWER8
or later CPUs (as it must be, since earlier qemu versions would implicitly
allow it). However it is disabled by default for the latest pseries-2.12
machine type.
This means that with the latest machine type, HTM will not be available,
regardless of CPU, unless it is explicitly enabled on the command line.
That change is made on the basis that:
* This way running with -M pseries,accel=tcg will start with whatever cpu
and will provide the same guest visible model as with accel=kvm.
- More specifically, this means existing make check tests don't have
to be modified to use cap-htm=off in order to run with TCG
* We hope to add a new "HTM without suspend" feature in the not too
distant future which could work on both POWER8 and POWER9 cpus, and
could be enabled by default.
* Best guesses suggest that future POWER cpus may well only support the
HTM-without-suspend model, not the (frankly, horribly overcomplicated)
POWER8 style HTM with suspend.
* Anecdotal evidence suggests problems with HTM being enabled when it
wasn't wanted are more common than being missing when it was.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Because PAPR is a paravirtual environment access to certain CPU (or other)
facilities can be blocked by the hypervisor. PAPR provides ways to
advertise in the device tree whether or not those features are available to
the guest.
In some places we automatically determine whether to make a feature
available based on whether our host can support it, in most cases this is
based on limitations in the available KVM implementation.
Although we correctly advertise this to the guest, it means that host
factors might make changes to the guest visible environment which is bad:
as well as generaly reducing reproducibility, it means that a migration
between different host environments can easily go bad.
We've mostly gotten away with it because the environments considered mature
enough to be well supported (basically, KVM on POWER8) have had consistent
feature availability. But, it's still not right and some limitations on
POWER9 is going to make it more of an issue in future.
This introduces an infrastructure for defining "sPAPR capabilities". These
are set by default based on the machine version, masked by the capabilities
of the chosen cpu, but can be overriden with machine properties.
The intention is at reset time we verify that the requested capabilities
can be supported on the host (considering TCG, KVM and/or host cpu
limitations). If not we simply fail, rather than silently modifying the
advertised featureset to the guest.
This does mean that certain configurations that "worked" may now fail, but
such configurations were already more subtly broken.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Currently the pseries machine sets the compatibility mode for the
guest's cpus in two places: 1) at machine reset and 2) after CAS
negotiation.
This means that if we set or negotiate a compatiblity mode, then
hotplug a cpu, the hotplugged cpu doesn't get the right mode set and
will incorrectly have the full native features.
To correct this, we set the compatibility mode on a cpu when it is
brought online with the 'start-cpu' RTAS call. Given that we no
longer need to set the compatibility mode on all CPUs at machine
reset, so we change that to only set the mode for the boot cpu.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
It's a deprecated dummy device since QEMU v2.6.0. That should have
been enough time to allow the users to update their scripts in case
they still use it, so let's remove this legacy code now.
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also introduce utilities to manipulate bitmasks (originaly from OPAL)
which be will be used in the model of the XIVE interrupt controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'pnv' prefix is now used for all and the routines populating the
device tree start with 'pnv_dt'. The handler of the PnvXScomInterface
is also renamed to 'dt_xscom' which should reflect that it is
populating the device tree under the 'xscom@' node of the chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These two are definitely warnings. Let's use the appropriate API.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
applied using ./scripts/clean-includes
not needed since 7ebaf79556
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
applied using ./scripts/clean-includes
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
if KVM is enabled and KVM capabilities MMU radix is available,
the partition table entry (patb_entry) for the radix mode is
initialized by default in ppc_spapr_reset().
It's a problem if we want to migrate the guest to a POWER8 host
while the kernel is not started to set the value to the one
expected for a POWER8 CPU.
The "-machine max-cpu-compat=power8" should allow to migrate
a POWER9 KVM host to a POWER8 KVM host, but because patb_entry
is set, the destination QEMU tries to enable radix mode on the
POWER8 host. This fails and cancels the migration:
Process table config unsupported by the host
error while loading state for instance 0x0 of device 'spapr'
load of migration failed: Invalid argument
This patch doesn't set the PATB entry if the user provides
a CPU compatibility mode that doesn't support radix mode.
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We conditionally adjust part of the guest device tree based on the
global msi_nonbroken flag. However, the main machine type code
initializes msi_nonbroken to true and there's nothing that would set
it to false again.
So replace the test with an assert().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Machine objects have two init functions - the generic QOM level
instance_init which should only do static object initialization, and
the Machine specific MachineClass::init which does the actual
construction of the machine.
In spapr the functions implementing these two have names -
ppc_machine_initfn() and ppc_spapr_init() - which don't correspond closely
to either of those. To prevent people (read, me) from confusing which is
which, rename them spapr_instance_init() and spapr_machine_init() to
make it clearer which is which.
While we're there rename ppc_spapr_reset() to spapr_machine_reset() to
match.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
According to LoPAPR 1.1 B.6.12, the "/event-sources" node has an "interrupt-
ranges" property, the format of which is described in B.6.9.1.2 as follows:
“interrupt-ranges”
Standard property name that defines the interrupt number(s) and range(s)
handled by this unit.
prop-encoded-array: List of (int-number, range) specifications.
Int-number is encoded as with encode-int.
Range is encoded as with encode-int.
The first entry in this list shall contain the int-number associated with
the first “reg” property entry. The int-num-ber is the value representing
the interrupt source as would appear in the PowerPC External Interrupt
Architecture XISR. The range shall be the number of sequential interrupt
numbers which this unit can generate.
There's no such thing as a cell count at the end of the array, like the
one introduced by commit ffbb1705a3 in QEMU 2.8. It doesn't seem it had
any impact on existing guests and I couldn't find any related workaround
in linux. So, let's just drop the bogus lines.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
LoPAPR 1.1 B.6.9.1.2 describes the "#interrupt-cells" property of the
PowerPC External Interrupt Source Controller node as follows:
“#interrupt-cells”
Standard property name to define the number of cells in an interrupt-
specifier within an interrupt domain.
prop-encoded-array: An integer, encoded as with encode-int, that denotes
the number of cells required to represent an interrupt specifier in its
child nodes.
The value of this property for the PowerPC External Interrupt option shall
be 2. Thus all interrupt specifiers (as used in the standard “interrupts”
property) shall consist of two cells, each containing an integer encoded
as with encode-int. The first integer represents the interrupt number the
second integer is the trigger code: 0 for edge triggered, 1 for level
triggered.
This patch fixes the interrupt specifiers in the "interrupt-map" property
of the PHB node, that were setting the second cell to 8 (confusion with
IRQ_TYPE_LEVEL_LOW ?) instead of 1.
VIO devices and RTAS event sources use the same format for interrupt
specifiers: while here, we introduce a common helper to handle the
encoding details.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
--
v3: - reference public LoPAPR instead of internal PAPR+ in changelog
- change helper name to spapr_dt_xics_irq()
v2: - drop the erroneous changes to the "interrupts" prop in PCI device nodes
- introduce a common helper to encode interrupt specifiers
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
SPAPR is the last user of numa_get_node() and a bunch of
supporting code to maintain numa_info[x].addr list.
Get LMB node id from pc-dimm list, which allows to
remove ~80LOC maintaining dynamic address range
lookup list.
It also removes pc-dimm dependency on numa_[un]set_mem_node_id()
and makes pc-dimms a sole source of information about which
node it belongs to and removes duplicate data from global
numa_info.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xics_get_qirq() is only used by the sPAPR machine. Let's move it there
and change its name to reflect its scope. It will be useful for XIVE
support which will use its own set of qirqs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It will make synchronisation easier with the XIVE interrupt mode when
available. The 'irq' parameter refers to the global IRQ number space.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also change the prototype to use a sPAPRMachineState and prefix them
with spapr_irq_. It will let us synchronise the IRQ allocation with
the XIVE interrupt mode when available.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'intc' pointer of the CPU references the interrupt presenter in
the XICS interrupt mode. When the XIVE interrupt mode is available and
activated, the machine will need to reassign this pointer to reflect
the change.
Moving this assignment under the realize routine of the CPU will ease
the process when the interrupt mode is toggled.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The sPAPR and the PowerNV core objects create the interrupt presenter
object of the CPUs in a very similar way. Let's provide a common
routine in which we use the presenter 'type' as a child identifier.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When a CPU is stopped with the 'stop-self' RTAS call, its state
'halted' is switched to 1 and, in this case, the MSR is not taken into
account anymore in the cpu_has_work() routine. Only the pending
hardware interrupts are checked with their LPCR:PECE* enablement bit.
The CPU is now also protected from the decrementer interrupt by the
LPCR:PECE* bits which are disabled in the 'stop-self' RTAS
call. Reseting the MSR is pointless.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Just like for hot unplug CPUs, when a guest is rebooted, the secondary
CPUs can be awaken by the decrementer and start entering SLOF at the
same time the boot CPU is.
To be safe, let's disable on the secondaries all the exceptions which
can cause an exit while the CPU is in power-saving mode.
Based on previous work from Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When a CPU is stopped with the 'stop-self' RTAS call, its state
'halted' is switched to 1 and, in this case, the MSR is not taken into
account anymore in the cpu_has_work() routine. Only the pending
hardware interrupts are checked with their LPCR:PECE* enablement bit.
If the DECR timer fires after 'stop-self' is called and before the CPU
'stop' state is reached, the nearly-dead CPU will have some work to do
and the guest will crash. This case happens very frequently with the
not yet upstream P9 XIVE exploitation mode. In XICS mode, the DECR is
occasionally fired but after 'stop' state, so no work is to be done
and the guest survives.
I suspect there is a race between the QEMU mainloop triggering the
timers and the TCG CPU thread but I could not quite identify the root
cause. To be safe, let's disable in the LPCR all the exceptions which
can cause an exit while the CPU is in power-saving mode and reenable
them when the CPU is started.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The current code assumes that only the CPU core object holds a
reference on each individual CPU object, and happily frees their
allocated memory when the core is unrealized. This is dangerous
as some other code can legitimely keep a pointer to a CPU if it
calls object_ref(), but it would end up with a dangling pointer.
Let's allocate all CPUs with object_new() and let QOM free them
when their reference count reaches zero. This greatly simplify the
code as we don't have to fiddle with the instance size anymore.
Signed-off-by: Greg Kurz <groug@kaod.org>
Acked-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
While we're at it fix a couple of small errors in the 2.11 and 2.10 models
(they didn't have any real effect, but don't quite match the template).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The bus pointer in PCIDevice is basically redundant with QOM information.
It's always initialized to the qdev_get_parent_bus(), the only difference
is the type.
Therefore this patch eliminates the field, instead creating a pci_get_bus()
helper to do the type mangling to derive it conveniently from the QOM
Device object underneath.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
pci_bus_init(), pci_bus_new_inplace(), pci_bus_new() and pci_register_bus()
are misleadingly named. They're not used for initializing *any* PCI bus,
but only for a root PCI bus.
Non-root buses - i.e. ones under a logical PCI to PCI bridge - are instead
created with a direct qbus_create_inplace() (see pci_bridge_initfn()).
This patch renames the functions to make it clear they're only used for
a root bus.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
At guest reset time, we allocate a hash page table (HPT) for the guest
based on the guest's RAM size. If dynamic HPT resizing is not available we
use the maximum RAM size, if it is we use the current RAM size.
But the "current RAM size" calculation is incorrect - we just use the
"base" ram_size from the machine structure. This doesn't include any
pluggable DIMMs that are already plugged at reset time.
This means that if you try to start a 'pseries' machine with a DIMM
specified on the command line that's much larger than the "base" RAM size,
then the guest will get a woefully inadequate HPT. This can lead to a
guest freeze during boot as it runs out of HPT space during initial MMU
setup.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Migration of pseries is broken with TCG because
QEMU tries to restore KVM MMU state unconditionally.
The result is a SIGSEGV in kvm_vm_ioctl():
#0 kvm_vm_ioctl (s=0x0, type=-2146390353)
at qemu/accel/kvm/kvm-all.c:2032
#1 0x00000001003e3e2c in kvmppc_configure_v3_mmu (cpu=<optimized out>,
radix=<optimized out>, gtse=<optimized out>, proc_tbl=<optimized out>)
at qemu/target/ppc/kvm.c:396
#2 0x00000001002f8b88 in spapr_post_load (opaque=0x1019103c0,
version_id=<optimized out>) at qemu/hw/ppc/spapr.c:1578
#3 0x000000010059e4cc in vmstate_load_state (f=0x106230000,
vmsd=0x1009479e0 <vmstate_spapr>, opaque=0x1019103c0,
version_id=<optimized out>) at qemu/migration/vmstate.c:165
#4 0x00000001005987e0 in vmstate_load (f=<optimized out>, se=<optimized out>)
at qemu/migration/savevm.c:748
This patch fixes the problem by not calling the KVM function with the
TCG mode.
Fixes: d39c90f5f3 ("spapr: Fix migration of Radix guests")
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The patb_entry is used to store the location of the process table in
guest memory. The msb is also used to indicate the mmu mode of the
guest, that is patb_entry & 1 << 63 ? radix_mode : hash_mode.
Currently we set this to zero in spapr_setup_hpt_and_vrma() since if
this function gets called then we know we're hash. However some code
paths, such as setting up the hpt on incoming migration of a hash guest,
call spapr_reallocate_hpt() directly bypassing this higher level
function. Since we assume radix if the host is capable this results in
the msb in patb_entry being left set so in spapr_post_load() we call
kvmppc_configure_v3_mmu() and tell the host we're radix which as
expected means addresses cannot be translated once we actually run the cpu.
To fix this move the zeroing of patb_entry into spapr_reallocate_hpt().
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
LUNs >= 256 have to be encoded with the so-called "flat space
addressing method" for virtio-scsi, where an additional bit has to
be set. SLOF already took care of this with the following commit:
https://git.qemu.org/?p=SLOF.git;a=commitdiff;h=f72a37713fea47da
(see https://bugzilla.redhat.com/show_bug.cgi?id=1431584 for details)
But QEMU does not use this encoding yet for device tree paths
that have to be handed over to SLOF to deal with the "bootindex"
property, so SLOF currently fails to boot from virtio-scsi devices
with LUNs >= 256 in the right boot order. Fix it by using the bit
to indicate the "flat space addressing method" for LUNs >= 256.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A DRC with a pending unplug request releases its associated device at
machine reset time.
In the case of LMB, when all DRCs for a DIMM device have been reset,
the DIMM gets unplugged, causing guest memory to disappear. This may
be very confusing for anything still using this memory.
This is exactly what happens with vhost backends, and QEMU aborts
with:
qemu-system-ppc64: used ring relocated for ring 2
qemu-system-ppc64: qemu/hw/virtio/vhost.c:649: vhost_commit: Assertion
`r >= 0' failed.
The issue is that each DRC registers a QEMU reset handler, and we
don't control the order in which these handlers are called (ie,
a LMB DRC will unplug a DIMM before the virtio device using the
memory on this DIMM could stop its vhost backend).
To avoid such situations, let's reset DRCs after all devices
have been reset.
Reported-by: Mallesh N. Koti <mallesh@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The device tree nodes ibm,arch-vec-5-platform-support and ibm,pa-features
are used to communicate features of the cpu to the guest operating
system. The properties of each of these are determined based on the
selected cpu model and the availability of hypervisor features.
Currently the compatibility mode of the cpu is not taken into account.
The ibm,arch-vec-5-platform-support node is used to communicate the
level of support for various ISAv3 processor features to the guest
before CAS to inform the guests' request. The available mmu mode should
only be hash unless the cpu is a POWER9 which is not in a prePOWER9
compat mode, in which case the available modes depend on the
accelerator and the hypervisor capabilities.
The ibm,pa-featues node is used to communicate the level of cpu support
for various features to the guest os. This should only contain features
relevant to the operating mode of the processor, that is the selected
cpu model taking into account any compat mode. This means that the
compat mode should be taken into account when choosing the properties of
ibm,pa-features and they should match the compat mode selected, or the
cpu model selected if no compat mode.
Update the setting of these cpu features in the device tree as described
above to properly take into account any compat mode. We use the
ppc_check_compat function which takes into account the current processor
model and the cpu compat mode.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
KVM HV will soon support running a guest in hash mode on a POWER9 host
running in radix mode (see [1]), however the guest currently fails to
boot.
This is because the "htab_shift" value (the size of the MMU's hash
table) is added to the device tree before KVM has had a chance to
change it. If the host is in hash mode, KVM does not need to change it
and so the problem is not seen, but when the host is in radix mode a
change is required and we see a problem.
To fix this, move the call spapr_setup_hpt_and_vrma() (where
htab_shift could be changed) up a little so that it's called before
spapr_h_cas_compose_response() (where htab_shift is added to the
device tree).
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[1] See http://www.spinics.net/lists/kvm-ppc/msg13057.html
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>