SAO is a page table attribute that strengthens the memory ordering of
accesses. QEMU with MTTCG does not implement this, so clear it in
ibm,pa-features. This is an obscure feature that has been removed from
POWER10 ISA v3.1, there isn't much concern with removing it.
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The POWER9 DD1 and POWER10 DD1 chips are not public and are no longer of
any use in QEMU. Remove them.
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The initial MSR state for the OpenFirmware binding specifies
MSR[ME] and MSR[FP] are set.
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Having to use -drive if=none,... and -device ide-[cd,hd] is
inconvenient. Add support for shorter convenience options such as
-cdrom and -drive media=disk. Also adjust two nearby comments for code
style.
Signed-off-by: BALATON Zoltan <balaton@eik.bme.hu>
Message-ID: <20240305225721.E9A404E6005@zero.eik.bme.hu>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
MacOS X uses multiple techniques for calibrating timers depending upon the detected
hardware. One of these calibration routines compares the change in the timebase
against the KeyLargo timer and uses this to recalculate the clock frequency,
timebase frequency and bus frequency if the calibration exceeds certain limits.
This recalibration occurs despite the correct values being passed via the device
tree, and is likely due to buggy firmware on some hardware.
The timebase frequency of 100MHz was set way back in 2005 by commit fa296b0fb4
("PIC fix - changed back TB frequency to 100 MHz") and with this value on a
mac99,via=pmu machine the OSX 10.2 timer calibration incorrectly calculates the
bus frequency as 400MHz instead of 100MHz. The most noticeable side-effect is
the UI appears sluggish and not very responsive for normal use.
Change the timebase frequency from 100MHz to 25MHz which matches that of a real
G4 AGP machine (the closest match to QEMU's mac99 machine) and allows OSX 10.2
to correctly detect all of the clock frequency, timebase frequency and bus
frequency.
Tested on various MacOS images from OS 9.2 through to OSX 10.4, along with Linux
and NetBSD and I was unable to find any regressions from this change.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240304073548.2098806-1-mark.cave-ayland@ilande.co.uk>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Split the sysbus version to a separate file so that it is not
included in PCI-only machines, and adjust Kconfig for machines
that do need sysbus-ohci. The copyrights are based on the
time and employer of balrog and Paul Brook's contributions.
While adjusting the SM501 dependency, move it to the right place
instead of keeping it in the R4D machine.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240223124406.234509-10-pbonzini@redhat.com>
[PMD: Rename some functions using 'ohci_sysbus_' prefix]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
With --without-default-devices it is possible to build a binary that
does not include any USB host controller and therefore that does not
include the code guarded by CONFIG_USB. While the simpler creation
functions such as usb_create_simple can be inlined, this is not true
of usb_bus_find(). Remove it, replacing it with a search of the single
USB bus on the machine.
Suggested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240223124406.234509-8-pbonzini@redhat.com>
[PMD: Fixed style]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
With --without-default-devices it should not be required to have
devices in the binary that are removed by -nodefaults. It should be
therefore possible to build a binary that does not include any USB
host controller or any of the code guarded by CONFIG_USB. While the
simpler creation functions such as usb_create_simple can be inlined,
this is not true of usb_bus_find(). Remove it, replacing it with a
search of the single USB bus on the machine.
With this change, it is possible to change "select USB_OHCI_PCI" into
an "imply" directive.
Suggested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240223124406.234509-7-pbonzini@redhat.com>
[PMD: Fixed style]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
usb_bus_find() is always used with argument -1; it can be replaced with
a search of the single USB bus on the machine.
Suggested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-ID: <20240223124406.234509-3-pbonzini@redhat.com>
[PMD: Fixed style]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
One of the functions of the ChipTOD is to transfer TOD to the Core
(aka PC - Pervasive Core) timebase facility.
The ChipTOD can be programmed with a target address to send the TOD
value to. The hardware implementation seems to perform this by
sending the TOD value to a SCOM address.
This implementation grabs the core directly and manipulates the
timebase facility state in the core. This is a hack, but it works
enough for now. A better implementation would implement the transfer
to the PnvCore xscom register and drive the timebase state machine
from there.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Wire the ChipTOD model to powernv9 and powernv10 machines.
Suggested-by-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The ChipTOD (for Time-Of-Day) is a chip pervasive facility in IBM POWER
(powernv) processors that keeps a time of day clock.
In particular for this model are facilities that initialise and start
the time of day clock, and that synchronise that clock to cores on the
chip, and to other chips. In this way, all cores on all chips can
synchronise timebase (TB).
This model implements functionality sufficient to run the skiboot
chiptod synchronisation procedure (with the following core timebase
state machine implementation). It does not modify the TB in the cores
where the real hardware would, because the QEMU ppc timebase
implementation is always synchronised acros all cores.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
This part of the patchset connects the nest1 chiplet model to p10 chip.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The N1 chiplet handle the high speed i/o traffic over PCIe and others.
The N1 chiplet consists of PowerBus Fabric controller,
nest Memory Management Unit, chiplet control unit and more.
This commit creates a N1 chiplet model and initialize and realize the
pervasive chiplet model where chiplet control registers are implemented.
This commit also implement the read/write method for the powerbus scom
registers
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
A POWER10 chip is divided into logical units called chiplets. Chiplets
are broadly divided into "core chiplets" (with the processor cores) and
"nest chiplets" (with everything else). Each chiplet has an attachment
to the pervasive bus (PIB) and with chiplet-specific registers. All nest
chiplets have a common basic set of registers and This model will provide
the registers functionality for common registers of nest chiplet (Pervasive
Chiplet, PB Chiplet, PCI Chiplets, MC Chiplet, PAU Chiplets)
This commit implement the read/write functions of chiplet control registers.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tests the following for both P9 and P10:
- I2C master POR status
- I2C master status after immediate reset
Tests the following for powernv10-ranier only:
- Config pca9552 hotplug device pins as inputs then
Read the INPUT0/1 registers to verify all pins are high
- Connected GPIO pin tests of P10 PCA9552 device. Tests
output of pins 0-4 affect input of pins 5-9 respectively.
- PCA9554 GPIO pins test. Tests input and ouput functionality.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
For powernv10-rainier, the Power Hypervisor code expects to see a
pca9554 device connected to the 3rd PNV I2C engine on port 1 at I2C
address 0x25 (or left-justified address of 0x4A). This is used by
the hypervisor code to detect if a "Cable Card" is present.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The QEMU I2C buses and devices use the resettable
interface for resetting while the PNV I2C controller
and parent buses and devices have not yet transitioned
to this new interface and use the old reset strategy.
This was preventing the I2C buses and devices wired
to the PNV I2C controller from being reset.
The short term fix for this is to have the PNV I2C
Controller's reset function explicitly call the resettable
interface function, bus_cold_reset(), on all child
I2C buses.
The long term fix should be to transition all PNV parent
devices and buses to use the resettable interface so that
all child buses and devices are automatically reset.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
For power10-rainier, a pca9552 device is used for PCIe slot hotplug
power control by the Power Hypervisor code. The code expects that
some time after it enables power to a PCIe slot by asserting one of
the pca9552 GPIO pins 0-4, it should see a "power good" signal asserted
on one of pca9552 GPIO pins 5-9.
To simulate this behavior, we simply connect the GPIO outputs for
pins 0-4 to the GPIO inputs for pins 5-9.
Each PCIe slot is assigned 3 GPIO pins on the pca9552 device, for
control of up to 5 PCIe slots. The per-slot signal names are:
SLOTx_EN.......PHYP uses this as an output to enable
slot power. We connect this to the
SLOTx_PG pin to simulate a PGOOD signal.
SLOTx_PG.......PHYP uses this as in input to detect
PGOOD for the slot. For our purposes
we just connect this to the SLOTx_EN
output.
SLOTx_Control..PHYP uses this as an output to prevent
a race condition in the real hotplug
circuitry, but we can ignore this output
for simulation.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The Power Hypervisor code expects to see a pca9552 device connected
to the 3rd PNV I2C engine on port 1 at I2C address 0x63 (or left-
justified address of 0xC6). This is used by hypervisor code to
control PCIe slot power during hotplug events.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Create a new powernv machine type, powernv10-rainier, that
will contain rainier-specific devices.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
POWER10 is the latest IBM Power machine. Although it is not offered in
"OPAL mode" (i.e., powernv configuration), so there is a case that it
should remain at powernv9, most of the development work is going into
powernv10 at the moment.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
pseries machines before version 2.11 have undergone many changes to
correct issues, mostly regarding migration compatibility. This is
obfuscating the code uselessly and makes maintenance more difficult.
Remove them and only keep the last version of the 2.x series, 2.12,
still in use by old distros.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Initialize the machine specific max_cpus limit as per the maximum range
of CPU IPIs available. Keeping between 4096 to 8192 will throw IRQ not
free error due to XIVE/XICS limitation and keeping beyond 8192 will hit
assert in tcg_region_init or spapr_xive_claim_irq.
Logs:
Without patch fix:
[root@host build]# qemu-system-ppc64 -accel tcg -smp 10,maxcpus=4097
qemu-system-ppc64: IRQ 4096 is not free
[root@host build]#
On LPAR:
[root@host build]# qemu-system-ppc64 -accel tcg -smp 10,maxcpus=8193
**
ERROR:../tcg/region.c:774:tcg_region_init: assertion failed:
(region_size >= 2 * page_size)
Bail out! ERROR:../tcg/region.c:774:tcg_region_init: assertion failed:
(region_size >= 2 * page_size)
Aborted (core dumped)
[root@host build]#
On x86:
[root@host build]# qemu-system-ppc64 -accel tcg -smp 10,maxcpus=8193
qemu-system-ppc64: ../hw/intc/spapr_xive.c:596: spapr_xive_claim_irq:
Assertion `lisn < xive->nr_irqs' failed.
Aborted (core dumped)
[root@host build]#
With patch fix:
[root@host build]# qemu-system-ppc64 -accel tcg -smp 10,maxcpus=4097
qemu-system-ppc64: Invalid SMP CPUs 4097. The max CPUs supported by
machine 'pseries-8.2' is 4096
[root@host build]#
Reported-by: Kowshik Jois <kowsjois@linux.ibm.com>
Tested-by: Kowshik Jois <kowsjois@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
spapr_irq_init currently uses existing macro SPAPR_XIRQ_BASE to refer to
the range of CPU IPIs during initialization of nr-irqs property.
It is more appropriate to have its own define which can be further
reused as appropriate for correct interpretation.
Suggested-by: Cedric Le Goater <clg@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Kowshik Jois <kowsjois@linux.ibm.com>
Signed-off-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
To reduce the use of the term 'softmmu', rename spapr_softmmu.c
to spapr_vhyp_mmu.c.
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
[np: change name]
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Since 'softmmu' is quite a loaded term in QEMU, rename the vhyp MMU
facilities to use the vhyp_mmu_ prefix rather than softmmu_.
vhyp_mmu_ is chosen because the code that manipulates the hash table
via guest software hypercalls is QEMU's implementation of the PAPR
hypervisor interface, called vhyp.
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
[npiggin: Pick a different name, explain it in changelog.]
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Check tcg_enabled() before calling softmmu_resize_hpt_prepare()
and softmmu_resize_hpt_commit() to allow the compiler to elide
their calls. The stubs are then unnecessary, remove them.
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Commit 9fdf0c2995 ("Start implementing pSeries logical partition
machine") added hw/ppc/spapr_hcall.c, then commit 962104f044
("hw/ppc: moved hcalls that depend on softmmu") extracted the
system code to hw/ppc/spapr_softmmu.c. Take the license and
copyrights from the original spapr_hcall.c at commit 9fdf0c2995.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
[npiggin: Update file description.]
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Prefer QDev API for QDev objects, avoid the underlying QOM layer.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20240216110313.17039-6-philmd@linaro.org>
Prefer QDev API for QDev objects, avoid the underlying QOM layer.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-Id: <20240216110313.17039-4-philmd@linaro.org>
ppc440_pcix.c is moved from the target specific ppc_ss[] meson
source set to pci_ss[] which is common to all targets: the
object is built once.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20240215105017.57748-5-philmd@linaro.org>
ppc4xx_pci.c is moved from the target specific ppc_ss[] meson
source set to pci_ss[] which is common to all targets: the
object is built once.
Declare PPC4XX_PCI selector in pci-host/Kconfig.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20240215105017.57748-4-philmd@linaro.org>
We should not wire IRQs on unrealized device.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20240213130341.1793-6-philmd@linaro.org>
This is a preparation for implementing relocation and toggling of SuperI/O
functions in the VT8231 device model. Upon reset, all SuperI/O functions will be
deactivated, so in case if no -bios is given, let the machine configure those
functions the same way Pegasos II firmware would do.
Signed-off-by: Bernhard Beschow <shentey@gmail.com>
Reviewed-by: BALATON Zoltan <balaton@eik.bme.hu>
Message-Id: <20240114123911.4877-11-shentey@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The character "+" is now forbidden in QOM device names (see commit
b447378e12 - "Limit type names to alphanumerical and some few special
characters"). For the "power5+" and "power7+" CPU names, there is
currently a hack in type_name_is_valid() to still allow them for
compatibility reasons. However, there is a much nicer solution for this:
Simply use aliases! This way we can still support the old names without
the need for the ugly hack in type_name_is_valid().
Message-ID: <20240117141054.73841-2-thuth@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Avoid directly referencing nd_table[] by first instantiating any
spapr-vlan devices using a qemu_get_nic_info() loop, then calling
pci_init_nic_devices() to do the rest.
No functional change intended.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Previously, the first PCI NIC would be placed in PCI slot 3 and the rest
would be dynamically assigned. Even if the user overrode the default NIC
type and made it something other than PCNet.
Now, the first PCNet NIC (that is, anything not explicitly specified
to be anything different) will go to slot 3 even if it isn't the first
NIC specified on the command line. And anything else will be dynamically
assigned.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Thomas Huth <thuth@redhat.com>
The name "iothread" is overloaded. Use the term Big QEMU Lock (BQL)
instead, it is already widely used and unambiguous.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-4-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The name "iothread" is overloaded. Use the term Big QEMU Lock (BQL)
instead, it is already widely used and unambiguous.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The Big QEMU Lock (BQL) has many names and they are confusing. The
actual QemuMutex variable is called qemu_global_mutex but it's commonly
referred to as the BQL in discussions and some code comments. The
locking APIs, however, are called qemu_mutex_lock_iothread() and
qemu_mutex_unlock_iothread().
The "iothread" name is historic and comes from when the main thread was
split into into KVM vcpu threads and the "iothread" (now called the main
loop thread). I have contributed to the confusion myself by introducing
a separate --object iothread, a separate concept unrelated to the BQL.
The "iothread" name is no longer appropriate for the BQL. Rename the
locking APIs to:
- void bql_lock(void)
- void bql_unlock(void)
- bool bql_locked(void)
There are more APIs with "iothread" in their names. Subsequent patches
will rename them. There are also comments and documentation that will be
updated in later patches.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: Fabiano Rosas <farosas@suse.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Acked-by: Hyman Huang <yong.huang@smartx.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-2-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The 'start-powered-off' property has been added to ARM CPUs in
commit 5de164304a ("arm: Allow secondary KVM CPUs to be booted
via PSCI"), then eventually got generalized to all CPUs in commit
c1b701587e ("target/arm: Move start-powered-off property to generic
CPUState"). Since all CPUs have it, no need to check whether it is
available. Updating this property can't fail, so use &error_abort.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20231123143813.42632-5-philmd@linaro.org>
CPUState::start_powered_off field is part of the internal
implementation of a QDev CPU. It is exposed as the QDev
"start-powered-off" property. External components should
use the qdev properties API to access it.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-Id: <20231123143813.42632-2-philmd@linaro.org>
This variable is about the host OS, not the target. It is used a lot
more since the Meson conversion, but the original sin dates back to 2003.
Time to fix it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>