Other accelerators have their own headers: sysemu/hax.h, sysemu/hvf.h,
sysemu/kvm.h, sysemu/whpx.h. Only tcg_enabled() & friends sit in
qemu-common.h. This necessitates inclusion of qemu-common.h into
headers, which is against the rules spelled out in qemu-common.h's
file comment.
Move tcg_enabled() & friends into their own header sysemu/tcg.h, and
adjust #include directives.
Cc: Richard Henderson <rth@twiddle.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-2-armbru@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[Rebased with conflicts resolved automatically, except for
accel/tcg/tcg-all.c]
Consolidate some boilerplate from foo_cpu_initfn.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Once we unlock S390_FEAT_VECTOR for TCG, we want linux-user to be
able to make use of it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: David Hildenbrand <david@redhat.com>
Right now we configure the pagesize quite early, when initializing KVM.
This is long before system memory is actually allocated via
memory_region_allocate_system_memory(), and therefore memory backends
marked as mapped.
Instead, let's configure the maximum page size after initializing
memory in s390_memory_init(). cap_hpage_1m is still properly
configured before creating any CPUs, and therefore before configuring
the CPU model and eventually enabling CMMA.
This is not a fix but rather a preparation for the future, when initial
memory might reside on memory backends (not the case for s390x right now)
We will replace qemu_getrampagesize() soon by a function that will always
return the maximum page size (not the minimum page size, which only
works by pure luck so far, as there are no memory backends).
Acked-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190417113143.5551-2-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
The license information in these files is rather confusing. The text
declares LGPL first, but then says that contributions after 2012 are
licensed under the GPL instead. How should the average user who just
downloaded the release tarball know which part is now GPL and which
is LGPL?
Looking at the text of the LGPL (see COPYING.LIB in the top directory),
the license clearly states how this should be done instead:
"3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License."
Thus let's clean up the confusing statements and use the proper GPL
text only.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1549456893-16589-1-git-send-email-thuth@redhat.com>
Acked-by: Laurent Vivier <laurent@vivier.eu>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
linux-user should always enable AFP, otherwise our emulated binary
might crash once it tries to make use of additional floating-point
registers or instructions.
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
Fixes: db0504154e ("s390x/tcg: check for AFP-register, BFP and DFP data exceptions")
Reported-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Tested-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This option has been deprecated for two releases; remove it.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
run_on_cpu() doesn't seem to work reliably until the CPU has been fully
created if the single-threaded TCG main loop is already running.
Therefore, hotplugging a CPU under single-threaded TCG does currently
not work. We should use the direct call instead of going via
run_on_cpu().
So let's use run_on_cpu() for KVM only - KVM requires it due to the initial
CPU reset ioctl. As a nice side effect, we get rid of the ifdef.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-10-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Right now, each CPU has its own TOD. Especially, the TOD will differ
based on creation time of a CPU - e.g. when hotplugging a CPU the times
will differ quite a lot, resulting in stall warnings in the guest.
Let's use a single TOD by implementing our new TOD device. Prepare it
for TOD-clock epoch extension.
Most importantly, whenever we set the TOD, we have to update the CKC
timer.
Introduce "tcg_s390x.h" just like "kvm_s390x.h" for tcg specific
function declarations that should not go into cpu.h.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-6-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Never set to anything but 0.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-5-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's treat this like a separate device. TCG will have to store the
actual state/time later on.
Include cpu-qom.h in kvm_s390x.h (due to S390CPU) to compile tod-kvm.c.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-4-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We are going to factor out the TOD into a separate device and use const
pointers for device class functions where possible. We are passing right
now ordinary pointers that should never be touched when setting the TOD.
Let's just pass the values directly.
Note that s390_set_clock() will be removed in a follow-on patch and
therefore its calling convention is not changed.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-3-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
The previous commit improved compile time by including less of the
generated QAPI headers. This is impossible for stuff defined directly
in qapi-schema.json, because that ends up in headers that that pull in
everything.
Move everything but include directives from qapi-schema.json to new
sub-module qapi/misc.json, then include just the "misc" shard where
possible.
It's possible everywhere, except:
* monitor.c needs qmp-command.h to get qmp_init_marshal()
* monitor.c, ui/vnc.c and the generated qapi-event-FOO.c need
qapi-event.h to get enum QAPIEvent
Perhaps we'll get rid of those some other day.
Adding a type to qapi/migration.json now recompiles some 120 instead
of 2300 out of 5100 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180211093607.27351-25-armbru@redhat.com>
[eblake: rebase to master]
Signed-off-by: Eric Blake <eblake@redhat.com>
Not needed anymore after removal of the memory hotplug code.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Presently s390x is the only architecture not exposing specific
CPU information via QMP query-cpus. Upstream discussion has shown
that it could make sense to report the architecture specific CPU
state, e.g. to detect that a CPU has been stopped.
With this change the output of query-cpus will look like this on
s390:
[
{"arch": "s390", "current": true,
"props": {"core-id": 0}, "cpu-state": "operating", "CPU": 0,
"qom_path": "/machine/unattached/device[0]",
"halted": false, "thread_id": 63115},
{"arch": "s390", "current": false,
"props": {"core-id": 1}, "cpu-state": "stopped", "CPU": 1,
"qom_path": "/machine/unattached/device[1]",
"halted": true, "thread_id": 63116}
]
This change doesn't add the s390-specific data to HMP 'info cpus'.
A follow-on patch will remove all architecture specific information
from there.
Signed-off-by: Viktor Mihajlovski <mihajlov@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <1518797321-28356-2-git-send-email-mihajlov@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
This patch is the s390 implementation of guest crash information,
similar to commit d187e08dc4 ("i386/cpu: add crash-information QOM
property") and the related commits. We will detect several crash
reasons, with the "disabled wait" being the most important one, since
this is used by all s390 guests as a "panic like" notification.
Demonstrate these ways with examples as follows.
1. crash-information QOM property;
Run qemu with -qmp unix:qmp-sock,server, then use utility "qmp-shell"
to execute "qom-get" command, and might get the result like,
(QEMU) (QEMU) qom-get path=/machine/unattached/device[0] \
property=crash-information
{"return": {"core": 0, "reason": "disabled-wait", "psw-mask": 562956395872256, \
"type": "s390", "psw-addr": 1102832}}
2. GUEST_PANICKED event reporting;
Run qemu with a socket option, and telnet or nc to that,
-chardev socket,id=qmp,port=4444,host=localhost,server \
-mon chardev=qmp,mode=control,pretty=on \
Negotiating the mode by { "execute": "qmp_capabilities" }, and the crash
information will be reported on a guest crash event like,
{
"timestamp": {
"seconds": 1518004739,
"microseconds": 552563
},
"event": "GUEST_PANICKED",
"data": {
"action": "pause",
"info": {
"core": 0,
"psw-addr": 1102832,
"reason": "disabled-wait",
"psw-mask": 562956395872256,
"type": "s390"
}
}
}
3. log;
Run qemu with the parameters: -D <logfile> -d guest_errors, to
specify the logfile and log item. The results might be,
Guest crashed on cpu 0: disabled-wait
PSW: 0x0002000180000000 0x000000000010d3f0
Co-authored-by: Jing Liu <liujbjl@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20180209122543.25755-1-borntraeger@de.ibm.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
[CH: tweaked qapi comment]
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
As cpu.h is another typically widely included file which doesn't need
full access to the softfloat API we can remove the includes from here
as well. Where they do need types it's typically for float_status and
the rounding modes so we move that to softfloat-types.h as well.
As a result of not having softfloat in every cpu.h call we now need to
add it to various helpers that do need the full softfloat.h
definitions.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[For PPC parts]
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Move floating interrupt handling into the flic. Floating interrupts
will now be considered by all CPUs, not just CPU #0. While at it, convert
I/O interrupts to use a list and make sure we properly consider I/O
sub-classes in s390_cpu_has_io_int().
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180129125623.21729-9-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We currently only support CRW machine checks. This is a preparation for
real floating interrupt support.
Get rid of the queue and handle it via the bit INTERRUPT_MCHK. We don't
rename it for now, as it will be soon gone (when moving crw machine checks
into the flic).
Please note that this is the same way also KVM handles it: only one
instance of a machine check can be pending at a time. So no need for a
queue.
While at it, make sure we try to deliver only if env->cregs[14]
actually indicates that CRWs are accepted.
Drop two unused defines on the way (we already have PSW_MASK_...).
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180129125623.21729-5-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We need to handle the bpb control on reset and migration. Normally
stfle.82 is transparent (and the normal guest part works without
hypervisor activity). To prevent any issues we require full
host kernel support for this feature.
Cc: qemu-stable@nongnu.org
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20180118085628.40798-3-borntraeger@de.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[CH: 'Branch Prediction Blocking' -> 'Branch prediction blocking']
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Move target cpu tcg initialization to common code,
called from cpu_exec_realizefn.
Acked-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Emilio G. Cota <cota@braap.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
When we try to start a CPU with a WAIT PSW, we have to take care that
TCG will actually try to continue executing instructions.
We must therefore really only unhalt the CPU if we don't have a WAIT
PSW. Also document the special order for restart interrupts, which
load a new PSW and change the state to operating.
To keep KVM working, simply don't have a look at the WAIT bit when
loading the PSW. Otherwise the behavior of a restart interrupt when
a CPU stopped would be changed.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928203708.9376-31-david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We want to use the same code base for TCG, so let's cleanly factor it
out.
The sigp mutex is currently not really needed, as everything is
protected by the iothread mutex. But this could change later, so leave
it in place and initialize it properly from common code.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928203708.9376-17-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Interrupts can't wake such CPUs up. SIGP from other CPUs has to be used
to toggle the state.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928203708.9376-7-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Currently, enabling/disabling of interrupts is not really supported.
Let's improve interrupt handling code by explicitly checking for
deliverable interrupts only. This is the first step. Checking for
external interrupt subclasses will be done next.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928203708.9376-5-david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
There are still some leftovers from old virtio interrupts in there.
Most importantly, we don't have to queue service interrupts anymore.
Just like KVM, we can simply multiplex the SCLP service interrupts and
avoid the queue.
Also, now only valid parameters/cpu_addr will be stored on service
interrupts.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928203708.9376-3-david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Just as for external interrupts and I/O interrupts, we need to
initialize mchk_index during cpu reset.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Provides an interface for getting and setting the guest's extended
TOD-Clock via a single ioctl to kvm. If the ioctl fails because it
is not support by kvm, then we fall back to the old style of
retrieving the clock via two ioctls.
Signed-off-by: Collin L. Walling <walling@linux.vnet.ibm.com>
Reviewed-by: Eric Farman <farman@linux.vnet.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
[split failure change from epoch index change]
Message-Id: <20171004105751.24655-2-borntraeger@de.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
[some cosmetic fixes]
core_id is not needed by linux-user, as the core_id a.k.a. CPU address
is only accessible from kernel space.
Therefore, drop next_core_id and make cpu_index get autoassigned again
for linux-user.
While at it, shield core_id and cpuid completely from linux-user. cpuid
can also only be queried from kernel space.
Suggested-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928134609.16985-5-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's move it into the machine, so we trigger the IRQ after setting
ms->possible_cpus (which SCLP uses to construct the list of
online CPUs).
This also fixes a problem reported by Thomas Huth, whereby qemu can be
crashed using the none machine
qemu-s390x-softmmu -M none -monitor stdio
-> device_add qemu-s390-cpu
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170928134609.16985-3-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
SCLP correctly indicates the core-id aka. CPU address for each available
CPU.
As the core-id corresponds to cpu_index, also a newly created kvm vcpu
gets assigned this core-id as vcpu id. So SIGP in the kernel works
correctly (it uses the vcpu id to lookup the correct CPU).
So there should be nothing hindering us from hotplugging CPUs in random
core-id order.
This now makes sure that the output from "query-hotpluggable-cpus"
is completely true. Until now, a specific order is implicit. Performance
vice, hotplugging CPUs in non-sequential order might not be the best thing
to do, as VCPU lookup inside KVM might be a little slower. But that
doesn't hinder us from supporting it.
next_core_id is now used by linux user only.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170913132417.24384-23-david@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
E.g. the following now works:
device_add host-s390-cpu,id=cpu1,core-id=1
The system will perform the same checks as when using cpu_add:
- If the core_id is already in use
- If the next sequential core_id isn't used
- If core-id >= max_cpu is specified
In addition, mixed CPU models are checked. E.g. if starting with
-cpu host and trying to hotplug "qemu-s390-cpu":
"Mixed CPU models are not supported on s390x."
Reviewed-by: Matthew Rosato <mjrosato@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170913132417.24384-17-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Adapt to the new term "core_id". While at it, fix the type and drop the
initialization to 0 (which is superfluous).
Reviewed-by: Matthew Rosato <mjrosato@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170913132417.24384-15-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Some time ago we discussed that using "id" as property name is not the
right thing to do, as it is a reserved property for other devices and
will not work with device_add.
Switch to the term "core-id" instead, and use it as an equivalent to
"CPU address" mentioned in the PoP. There is no such thing as cpu number,
so rename env.cpu_num to env.core_id. We use "core-id" as this is the
common term to use for device_add later on (x86 and ppc).
We can get rid of cpu->id now. Keep cpu_index and env->core_id in sync.
cpu_index was already implicitly used by e.g. cpu_exists(), so keeping
both in sync seems to be the right thing to do.
cpu_index will now no longer automatically get set via
cpu_exec_realizefn(). For now, we were lucky that both implicitly stayed
in sync.
Our new cpu property "core-id" can be a static property. Range checks can
be avoided by using the correct type and the "setting after realized"
check is done implicitly.
device_add will later need the reserved "id" property. Hotplugging a CPU
on s390x will then be: "device_add host-s390-cpu,id=cpu2,core-id=2".
Reviewed-by: Matthew Rosato <mjrosato@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170913132417.24384-14-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
scc->next_cpu_id is updated when realizing. Setting it just before that
point looks cleaner.
Reviewed-by: Matthew Rosato <mjrosato@linux.vnet.ibm.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170913132417.24384-13-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
cpu_s390x_init() is used only *-user targets indirectly
via cpu_init() macro and has a hack to assign ids to created
cpus (I'm not sure if 'id' really matters to *-user emulation).
So to on safe side, instead of having custom wrapper to do numbering
replace it with cpu_generic_init() and use S390CPUClass::next_cpu_id
which could serve the same purpose as static variable and move cpu->id
initialization to s390_cpu_initfn for CONFIG_USER_ONLY use-case.
PS:
ifdef is ugly but it allows us to hide s390x detail that isn't
set by *-user targets and reuse generic cpu creation utility
for btoh machine and user emulation.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Message-Id: <1504185578-80843-1-git-send-email-imammedo@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Let's do it just like the other architectures. Introduce kvm-stub.c
for stubs and kvm_s390x.h for the declarations.
Change license to GPL2+ and keep copyright notice.
As we are dropping the sysemu/kvm.h include from cpu.h, fix up includes.
Suggested-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170818114353.13455-18-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's just introduce an helper.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170818114353.13455-17-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Prepare to move more stuff (especially KVM related) from cpu.h to
internal.h.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170818114353.13455-16-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
cpu.h should only contain what really has to be accessed outside of
target/s390x/. Add internal.h which can only be used inside target/s390x/.
Move everything that isn't fast enough to run away and restructure it
right away. We'll move all kvm_* stuff later.
Minor style fixes to avoid checkpatch warning to:
- struct Lowcore: "{" goes into same line as typedef
- struct LowCore: add spaces around "-" in array length calculations
- time2tod() and tod2time(): move "{" to separate line
- get_per_atmid(): add space between ")" and "?". Move cases by one char.
- get_per_atmid(): drop extra paremthesis around (1 << 6)
Change license of new file to GPL2+ and keep copyright notice.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170818114353.13455-15-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Adding some CONFIG_TCG tests to be finally able to compile QEMU
on s390x also without TCG.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1500886370-14572-6-git-send-email-thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
The riccb is kept unchanged during initial cpu reset. Move the data
structure to the other registers that are unchanged.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
All of the interlocked access facility instructions raise a
specification exception for unaligned accesses. Do this by
using the (previously unused) unaligned_access hook.
Reviewed-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Richard Henderson <rth@twiddle.net>
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>