Commit Graph

4 Commits

Author SHA1 Message Date
Alexey Kardashevskiy
8994e91e96 spapr-iommu: Always advertise the maximum possible DMA window size
When deciding about the huge DMA window, the typical Linux pseries guest
uses the maximum allowed RAM size as the upper limit. We did the same
on QEMU side to match that logic. Now we are going to support a GPU RAM
pass through which is not available at the guest boot time as it requires
the guest driver interaction. As the result, the guest requests a smaller
window than it should. Therefore the guest needs to be patched to
understand this new memory and so does QEMU.

Instead of reimplementing here whatever solution we choose for the guest,
this advertises the biggest possible window size limited by 32 bit
(as defined by LoPAPR). Since the window size has to be power-of-two
(the create rtas call receives a window shift, not a size),
this uses 0x8000.0000 as the maximum number of TCEs possible (rather than
32bit maximum of 0xffff.ffff).

This is safe as:
1. The guest visible emulated table is allocated in KVM (actual pages
are allocated in page fault handler) and QEMU (actual pages are allocated
when updated);
2. The hardware table (and corresponding userspace address table)
supports sparse allocation and also checks for locked_vm limit so
it is unable to cause the host any damage.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:37:38 +11:00
David Hildenbrand
e017da370b machine: rename MemoryHotplugState to DeviceMemoryState
Rename it to better match the new terminology.

Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-9-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2018-05-07 10:00:02 -03:00
David Hildenbrand
b0c14ec4ef machine: make MemoryHotplugState accessible via the machine
Let's allow to query the MemoryHotplugState directly from the machine.
If the pointer is NULL, the machine does not support memory devices. If
the pointer is !NULL, the machine supports memory devices and the
data structure contains information about the applicable physical
guest address space region.

This allows us to generically detect if a certain machine has support
for memory devices, and to generically manage it (find free address
range, plug/unplug a memory region).

We will rename "MemoryHotplugState" to something more meaningful
("DeviceMemory") after we completed factoring out the pc-dimm code into
MemoryDevice code.

Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-3-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
[ehabkost: rebased series, solved conflicts at spapr.c]
[ehabkost: squashed fix to use g_malloc0()]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2018-05-07 10:00:02 -03:00
Alexey Kardashevskiy
ae4de14cd3 spapr_pci/spapr_pci_vfio: Support Dynamic DMA Windows (DDW)
This adds support for Dynamic DMA Windows (DDW) option defined by
the SPAPR specification which allows to have additional DMA window(s)

The "ddw" property is enabled by default on a PHB but for compatibility
the pseries-2.6 machine and older disable it.
This also creates a single DMA window for the older machines to
maintain backward migration.

This implements DDW for PHB with emulated and VFIO devices. The host
kernel support is required. The advertised IOMMU page sizes are 4K and
64K; 16M pages are supported but not advertised by default, in order to
enable them, the user has to specify "pgsz" property for PHB and
enable huge pages for RAM.

The existing linux guests try creating one additional huge DMA window
with 64K or 16MB pages and map the entire guest RAM to. If succeeded,
the guest switches to dma_direct_ops and never calls TCE hypercalls
(H_PUT_TCE,...) again. This enables VFIO devices to use the entire RAM
and not waste time on map/unmap later. This adds a "dma64_win_addr"
property which is a bus address for the 64bit window and by default
set to 0x800.0000.0000.0000 as this is what the modern POWER8 hardware
uses and this allows having emulated and VFIO devices on the same bus.

This adds 4 RTAS handlers:
* ibm,query-pe-dma-window
* ibm,create-pe-dma-window
* ibm,remove-pe-dma-window
* ibm,reset-pe-dma-window
These are registered from type_init() callback.

These RTAS handlers are implemented in a separate file to avoid polluting
spapr_iommu.c with PCI.

This changes sPAPRPHBState::dma_liobn to an array to allow 2 LIOBNs
and updates all references to dma_liobn. However this does not add
64bit LIOBN to the migration stream as in fact even 32bit LIOBN is
rather pointless there (as it is a PHB property and the management
software can/should pass LIOBNs via CLI) but we keep it for the backward
migration support.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-07-05 14:31:08 +10:00