All of the existing code was boilerplate from elsewhere,
and would crash the guest upon the first signal.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Stafford Horne <shorne@gmail.com>
---
v2:
Add a comment to the new definition of target_pt_regs.
Install the signal mask into the ucontext.
v3:
Incorporate feedback from Laurent.
The architecture supports 128 TLB entries. There is no reason
not to provide all of them. In the process we need to fix a
bug that failed to parameterize the configuration register that
tells the operating system the number of entries.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Stafford Horne <shorne@gmail.com>
---
v2:
- Change VMState version.
There is no reason to use an indirect branch instead
of simply testing the SR bits that control mmu state.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Stafford Horne <shorne@gmail.com>
Rather than emit disassembly while translating, reuse the
generated decoder to build a separate disassembler.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Stafford Horne <shorne@gmail.com>
use new OPENRISC_CPU_TYPE_NAME to compose CPU type name and get
rid of intermediate OpenRISCCPUInfo/openrisc_cpu_register_types()
which is replaced by static TypeInfo array.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <1507211474-188400-18-git-send-email-imammedo@redhat.com>
Acked-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Move target cpu tcg initialization to common code,
called from cpu_exec_realizefn.
Acked-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Emilio G. Cota <cota@braap.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In order to support multicore system we move some of the previously
static state variables into the state of each core.
On the other hand in order to allow timers to be synced between each
code the ttcr (tick timer count register) is moved out of the core.
This is not as per real hardware spec which has a separate timer counter
per core, but it seems the most simple way to keep each clock in sync.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Stafford Horne <shorne@gmail.com>
it's just a wrapper, drop it and use cpu_generic_init() directly
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Stafford Horne <shorne@gmail.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <1503592308-93913-24-git-send-email-imammedo@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The OpenRISC architecture has the Power Management Register (PMR)
special purpose register to manage cpu power states. The interesting
modes are:
* Doze Mode (DME) - Stop cpu except timer & pic - wake on interrupt
* Sleep Mode (SME) - Stop cpu and all units - wake on interrupt
* Suspend Model (SUME) - Stop cpu and all units - wake on reset
The linux kernel will set DME when idle.
This patch implements the PMR SPR and halts the qemu cpu when there is a
change to DME or SME. This means that openrisc qemu in no longer peggs
a host cpu at 100%.
In order for this to work we need to kick the CPU when timers are
expired. Update the cpu timer to kick the cpu upon each timer event.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Stafford Horne <shorne@gmail.com>
The features property has stored the exact same thing as the cpucfgr
spr. Remove the feature enum and property as it is not needed.
In order to preserve the behavior or keeping features accross reset this
patch moves cpucfgr into the non reset region of the state struct. Since
the cpucfgr is read only this means we only need to sset cpucfgr once
during class init.
Signed-off-by: Stafford Horne <shorne@gmail.com>
Shadow registers are part of the openrisc spec along with sr[cid], as
part of the fast context switching feature. When exceptions occur,
instead of having to save registers to the stack if enabled the CID will
increment and a new set of registers will be available.
This patch only implements shadow registers which can be used as extra
scratch registers via the mfspr and mtspr if required. This is
implemented in a way where it would be easy to add on the fast context
switching, currently cid is hardcoded to 0.
This is need for openrisc linux smp kernels to boot correctly.
Signed-off-by: Stafford Horne <shorne@gmail.com>
Exception Vector Base Address Register (EVBAR) - This optional register
can be used to apply an offset to the exception vector addresses.
The significant bits (31-12) of the vector offset address for each
exception depend on the setting of the Supervision Register (SR)'s EPH
bit and the Exception Vector Base Address Register (EVBAR).
Its presence is indicated by the EVBARP bit in the CPU Configuration
Register (CPUCFGR).
Signed-off-by: Tim 'mithro' Ansell <mithro@mithis.com>
Signed-off-by: Stafford Horne <shorne@gmail.com>
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>