Leading underscores are ill-advised because such identifiers are
reserved. Trailing underscores are merely ugly. Strip both.
Our header guards commonly end in _H. Normalize the exceptions.
Done with scripts/clean-header-guards.pl.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190315145123.28030-7-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
[Changes to slirp/ dropped, as we're about to spin it off]
The POWER9 processor does not support per-core frequency control. The
cores are arranged in groups of four, along with their respective L2
and L3 caches, into a structure known as a Quad. The frequency must be
managed at the Quad level.
Provide a basic Quad model to fake the settings done by the firmware
on the Non-Cacheable Unit (NCU). Each core pair (EX) needs a special
BAR setting for the TIMA area of XIVE because it resides on the same
address on all chips.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-12-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The OCC on POWER9 is very similar to the one found on POWER8. Provide
the same routines with P9 values for the registers and IRQ number.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The LPC Controller on POWER9 is very similar to the one found on
POWER8 but accesses are now done via on MMIOs, without the XSCOM and
ECCB logic. The device tree is populated differently so we add a
specific POWER9 routine for the purpose.
SerIRQ routing is yet to be done.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The ISA bus has a different DT nodename on POWER9. Compute the name
when the PnvChip is realized, that is before it is used by the machine
to populate the device tree with the ISA devices.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-6-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PSI bridge on POWER9 is very similar to POWER8. The BAR is still
set through XSCOM but the controls are now entirely done with MMIOs.
More interrupts are defined and the interrupt controller interface has
changed to XIVE. The POWER9 model is a first example of the usage of
the notify() handler of the XiveNotifier interface, linking the PSI
XiveSource to its owning device model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To ease the introduction of the PSI bridge model for POWER9, abstract
the POWER chip differences in a PnvPsi class model and introduce a
specific Pnv8Psi type for POWER8. POWER8 interface to the interrupt
controller is still XICS whereas POWER9 uses the new XIVE model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The POWER9 and POWER8 processors have different interrupt controllers,
and reporting their state requires calling different helper routines.
However, the interrupt presenters are still handled in the higher
level pic_print_info() routine because they are not related to the
chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-9-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The POWER9 and POWER8 processors have a different set of devices and a
different device tree layout.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-8-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is a simple model of the POWER9 XIVE interrupt controller for the
PowerNV machine which only addresses the needs of the skiboot
firmware. The PowerNV model reuses the common XIVE framework developed
for sPAPR as the fundamentals aspects are quite the same. The
difference are outlined below.
The controller initial BAR configuration is performed using the XSCOM
bus from there, MMIO are used for further configuration.
The MMIO regions exposed are :
- Interrupt controller registers
- ESB pages for IPIs and ENDs
- Presenter MMIO (Not used)
- Thread Interrupt Management Area MMIO, direct and indirect
The virtualization controller MMIO region containing the IPI ESB pages
and END ESB pages is sub-divided into "sets" which map portions of the
VC region to the different ESB pages. These are modeled with custom
address spaces and the XiveSource and XiveENDSource objects are sized
to the maximum allowed by HW. The memory regions are resized at
run-time using the configuration of EDT set translation table provided
by the firmware.
The XIVE virtualization structure tables (EAT, ENDT, NVTT) are now in
the machine RAM and not in the hypervisor anymore. The firmware
(skiboot) configures these tables using Virtual Structure Descriptor
defining the characteristics of each table : SBE, EAS, END and
NVT. These are later used to access the virtual interrupt entries. The
internal cache of these tables in the interrupt controller is updated
and invalidated using a set of registers.
Still to address to complete the model but not fully required is the
support for block grouping. Escalation support will be necessary for
KVM guests.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, the interrupt presenter is linked to a CPU using the
cpu_intc_create() method of the sPAPR IRQ backend. The resulting
object is assigned to the PowerPCCPU 'intc' pointer whatever the
interrupt mode, XICS or XIVE.
To support the 'dual' interrupt mode, we will need to distinguish
between the two presenter objects and for that, we plan to introduce a
second interrupt presenter object pointer under the PowerPCCPU. The
modifications below move the assignment of the presenter object under
the cpu_intc_create() method to prepare ground for the future changes.
Both sPAPR and PowerNV machines are impacted.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It introduces a base PnvChip class from which the specific processor
chip classes, Pnv8Chip and Pnv9Chip, inherit. Each of them needs to
define an init and a realize routine which will create the controllers
of the target processor. For the moment, the base PnvChip class
handles the XSCOM bus and the cores.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This moves the details of the ISA bus creation under the LPC model but
more important, the new PnvChip operation will let us choose the chip
class to use when we introduce the different chip classes for Power9
and Power8. It hides away the processor chip controllers from the
machine.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On Power9, the thread interrupt presenter has a different type and is
linked to the chip owning the cores.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XSCOM base address of the core chiplet was wrongly calculated. Use
the OPAL macros to fix that and do a couple of renames.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These are useful when instantiating device models which are shared
between the POWER8 and the POWER9 processor families.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'pnv' prefix is now used for all and the routines populating the
device tree start with 'pnv_dt'. The handler of the PnvXScomInterface
is also renamed to 'dt_xscom' which should reflect that it is
populating the device tree under the 'xscom@' node of the chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
deduce core type directly from chip type instead of
maintaining type mapping in PnvChipClass::cpu_model.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
typically for cpus/core type names following convention is used
new_type_prefix-superclass_typename
make PNV core/chip to follow common convention.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
use common cpu_model prasing in vl.c and set default cpu_model
using generic MachineClass::default_cpu_type.
Beside of switching to generic infrastructure it solves several
issues.
* ppc_cpu_class_by_name() is used to deal with lower/upper case
and alias translations into actual cpu type, which fixes
'-M powernv -cpu power8' and '-M powernv -cpu power9_v1.0'
usecases which error out with:
'invalid CPU model 'FOO' for powernv machine'
* allows to switch to lower-case typenames in pnv chip/core name
(by convention typnames should be lower-case)
* replace aliased names /power8, power9, .../ with exact cpu model
names (i.e. typenames should be stable but aliases might decide to
point to other cpu model withi family or changed by kvm). It will
also help to simplify pnv_chip/core code and get rid of dependency
on cpu_model parsing.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[dwg: Updated to make DD2.0 as default POWER9 chip]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This makes some changes to fix build failures on the 'min-glib' docker
image, and maybe other platforms with a buildchain that's less tolerant
about duplicated typedefs.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
OpenPOWER systems expect to be notified with such an event before a
shutdown or a reboot. An OEM SEL message is sent with specific
identifiers and a user data containing the request : OFF or REBOOT.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Skiboot, the firmware for the PowerNV platform, expects the BMC to
provide some specific IPMI sensors. These sensors are exposed in the
device tree and their values are updated by the firmware at boot time.
Sensors of interest are :
"FW Boot Progress"
"Boot Count"
As such a device is defined on the command line, we can only detect
its presence at reset time.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The OCC is an on-chip microcontroller based on a ppc405 core used
for various power management tasks. It comes with a pile of additional
hardware sitting on the PIB (aka XSCOM bus). At this point we don't
emulate it (nor plan to do so). However there is one facility which
is provided by the surrounding hardware that we do need, which is the
interrupt generation facility. OPAL uses it to send itself interrupts
under some circumstances and there are other uses around the corner.
So this implement just enough to support this.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[clg: - updated for qemu-2.9
- changed the XSCOM interface to fit new model
- QOMified the model ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The Processor Service Interface (PSI) Controller is one of the engines
of the "Bridge" unit which connects the different interfaces to the
Power Processor.
This adds just enough of the PSI bridge to handle various on-chip and
the one external interrupt. The rest of PSI has to do with the link to
the IBM FSP service processor which we don't plan to emulate (not used
on OpenPower machines).
The ics_get() and ics_resend() handlers of the XICSFabric interface of
the PowerNV machine are now defined to handle the Interrupt Control
Source of PSI. The InterruptStatsProvider interface is also modified
to dump the new ICS.
Originally from Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This provides to a PowerNV chip (POWER8) access to the Interrupt
Management area, which contains the registers of the Interrupt Control
Presenters of each thread. These are used to accept, return, forward
interrupts in the system.
This area is modeled with a per-chip container memory region holding
all the ICP registers. Each thread of a chip is then associated with
its ICP registers using a memory subregion indexed by its PIR number
in the overall region.
The device tree is populated accordingly.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Some controllers (ICP, PSI) have a base register address which is
calculated using the chip id.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XSCOM addresses for the core registers are encoded in a slightly
different way on POWER8 and POWER9.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PnvChip is defined twice and this can confuse old compilers :
CC ppc64-softmmu/hw/ppc/pnv_xscom.o
In file included from qemu.git/hw/ppc/pnv.c:29:
qemu.git/include/hw/ppc/pnv.h:60: error: redefinition of typedef ‘PnvChip’
qemu.git/include/hw/ppc/pnv_xscom.h:24: note: previous declaration of ‘PnvChip’ was here
make[1]: *** [hw/ppc/pnv.o] Error 1
make[1]: *** Waiting for unfinished jobs....
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
As Qemu only supports a single instance of the ISA bus, we use the LPC
controller of chip 0 to create one and plug in a couple of useful
devices, like an UART and RTC. An IPMI BT device, which is also an ISA
device, can be defined on the command line to connect an external BMC.
That is for later.
The PowerNV machine now has a console. Skiboot should load a kernel
and jump into it but execution will stop quite early because we lack a
model for the native XICS controller for the moment :
[ 0.000000] NR_IRQS:512 nr_irqs:512 16
[ 0.000000] XICS: Cannot find a Presentation Controller !
[ 0.000000] ------------[ cut here ]------------
[ 0.000000] WARNING: at arch/powerpc/platforms/powernv/setup.c:81
...
[ 0.000000] NIP [c00000000079d65c] pnv_init_IRQ+0x30/0x44
You can still do a few things under xmon.
Based on previous work from :
Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Trivial fix for a change in the serial_hds_isa_init() interface]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The LPC (Low Pin Count) interface on a POWER8 is made accessible to
the system through the ADU (XSCOM interface). This interface is part
of set of units connected together via a local OPB (On-Chip Peripheral
Bus) which act as a bridge between the ADU and the off chip LPC
endpoints, like external flash modules.
The most important units of this OPB are :
- OPB Master: contains the ADU slave logic, a set of internal
registers and the logic to control the OPB.
- LPCHC (LPC HOST Controller): which implements a OPB Slave, a set of
internal registers and the LPC HOST Controller to control the LPC
interface.
Four address spaces are provided to the ADU :
- LPC Bus Firmware Memory
- LPC Bus Memory
- LPC Bus I/O (ISA bus)
- and the registers for the OPB Master and the LPC Host Controller
On POWER8, an intermediate hop is necessary to reach the OPB, through
a unit called the ECCB. OPB commands are simply mangled in ECCB write
commands.
On POWER9, the OPB master address space can be accessed via MMIO. The
logic is same but the code will be simpler as the XSCOM and ECCB hops
are not necessary anymore.
This version of the LPC controller model doesn't yet implement support
for the SerIRQ deserializer present in the Naples version of the chip
though some preliminary work is there.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[clg: - updated for qemu-2.7
- ported on latest PowerNV patchset
- changed the XSCOM interface to fit new model
- QOMified the model
- moved the ISA hunks in another patch
- removed printf logging
- added a couple of UNIMP logging
- rewrote commit log ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On a real POWER8 system, the Pervasive Interconnect Bus (PIB) serves
as a backbone to connect different units of the system. The host
firmware connects to the PIB through a bridge unit, the
Alter-Display-Unit (ADU), which gives him access to all the chiplets
on the PCB network (Pervasive Connect Bus), the PIB acting as the root
of this network.
XSCOM (serial communication) is the interface to the sideband bus
provided by the POWER8 pervasive unit to read and write to chiplets
resources. This is needed by the host firmware, OPAL and to a lesser
extent, Linux. This is among others how the PCI Host bridges get
configured at boot or how the LPC bus is accessed.
To represent the ADU of a real system, we introduce a specific
AddressSpace to dispatch XSCOM accesses to the targeted chiplets. The
translation of an XSCOM address into a PCB register address is
slightly different between the P9 and the P8. This is handled before
the dispatch using a 8byte alignment for all.
To customize the device tree, a QOM InterfaceClass, PnvXScomInterface,
is provided with a populate() handler. The chip populates the device
tree by simply looping on its children. Therefore, each model needing
custom nodes should not forget to declare itself as a child at
instantiation time.
Based on previous work done by :
Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Added cpu parameter to xscom_complete()]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is largy inspired by sPAPRCPUCore with some simplification, no
hotplug for instance. A set of PnvCore objects is added to the PnvChip
and the device tree is populated looping on these cores.
Real HW cpu ids are now generated depending on the chip cpu model, the
chip id and a core mask. The id is propagated to the CPU object, using
properties, to set the SPR_PIR (Processor Identification Register)
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The Processor Identification Register (PIR) is a register that holds a
processor identifier which is used for bus transactions (XSCOM) and
for processor differentiation in multiprocessor systems. It also used
in the interrupt vector entries (IVE) to identify the thread serving
the interrupts.
P9 and P8 have some differences in the CPU PIR encoding.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This will be used to build real HW ids for the cores and enforce some
limits on the available cores per chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is is an abstraction of a POWER8 chip which is a set of cores
plus other 'units', like the pervasive unit, the interrupt controller,
the memory controller, the on-chip microcontroller, etc. The whole can
be seen as a socket. It depends on a cpu model and its characteristics:
max cores and specific inits are defined in a PnvChipClass.
We start with an near empty PnvChip with only a few cpu constants
which we will grow in the subsequent patches with the controllers
required to run the system.
The Chip CFAM (Common FRU Access Module) ID gives the model of the
chip and its version number. It is generally the first thing firmwares
fetch, available at XSCOM PCB address 0xf000f, to start initialization.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The goal is to emulate a PowerNV system at the level of the skiboot
firmware, which loads the OS and provides some runtime services. Power
Systems have a lower firmware (HostBoot) that does low level system
initialization, like DRAM training. This is beyond the scope of what
qemu will address in a PowerNV guest.
No devices yet, not even an interrupt controller. Just to get started,
some RAM to load the skiboot firmware, the kernel and initrd. The
device tree is fully created in the machine reset op.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[clg: - updated for qemu-2.7
- replaced fprintf by error_report
- used a common definition of _FDT macro
- removed VMStateDescription as migration is not yet supported
- added IBM Copyright statements
- reworked kernel_filename handling
- merged PnvSystem and sPowerNVMachineState
- removed PHANDLE_XICP
- added ppc_create_page_sizes_prop helper
- removed nmi support
- removed kvm support
- updated powernv machine to version 2.8
- removed chips and cpus, They will be provided in another patches
- added a machine reset routine to initialize the device tree (also)
- french has a squelette and english a skeleton.
- improved commit log.
- reworked prototypes parameters
- added a check on the ram size (thanks to Michael Ellerman)
- fixed chip-id cell
- changed MAX_CPUS to 2048
- simplified memory node creation to one node only
- removed machine version
- rewrote the device tree creation with the fdt "rw" routines
- s/sPowerNVMachineState/PnvMachineState/
- etc.]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>