"vof.h" doesn't need the full "cpu.h" to get the target_ulong
definition, including "exec/cpu-defs.h" is enough.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20221213123550.39302-3-philmd@linaro.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
vof.h requires "qom/object.h" for DECLARE_CLASS_CHECKERS(),
"exec/memory.h" for address_space_read/write(),
"exec/address-spaces.h" for address_space_memory
and more importantly "cpu.h" for target_ulong.
vof.c doesn't need "exec/ram_addr.h".
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220122003104.84391-1-f4bug@amsat.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Coverity reported issues which are caused by mixing of signed return codes
from DTC and unsigned return codes of the client interface.
This introduces PROM_ERROR and makes distinction between the error types.
This fixes NEGATIVE_RETURNS, OVERRUN issues reported by Coverity.
This adds a comment about the return parameters number in the VOF hcall.
The reason for such counting is to keep the numbers look the same in
vof_client_handle() and the Linux (an OF client).
vmc->client_architecture_support() returns target_ulong and we want to
propagate this to the client (for example H_MULTI_THREADS_ACTIVE).
The VOF path to do_client_architecture_support() needs chopping off
the top 32bit but SLOF's H_CAS does not; and either way the return values
are either 0 or 32bit negative error code. For now this chops
the top 32bits.
This makes "claim" fail if the allocated address is above 4GB as
the client interface is 32bit. This still allows claiming memory above
4GB as potentially initrd can be put there and the client can read
the address from the FDT's "available" property.
Fixes: CID 1458139, 1458138, 1458137, 1458133, 1458132
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20210720050726.2737405-1-aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PAPR platform describes an OS environment that's presented by
a combination of a hypervisor and firmware. The features it specifies
require collaboration between the firmware and the hypervisor.
Since the beginning, the runtime component of the firmware (RTAS) has
been implemented as a 20 byte shim which simply forwards it to
a hypercall implemented in qemu. The boot time firmware component is
SLOF - but a build that's specific to qemu, and has always needed to be
updated in sync with it. Even though we've managed to limit the amount
of runtime communication we need between qemu and SLOF, there's some,
and it has become increasingly awkward to handle as we've implemented
new features.
This implements a boot time OF client interface (CI) which is
enabled by a new "x-vof" pseries machine option (stands for "Virtual Open
Firmware). When enabled, QEMU implements the custom H_OF_CLIENT hcall
which implements Open Firmware Client Interface (OF CI). This allows
using a smaller stateless firmware which does not have to manage
the device tree.
The new "vof.bin" firmware image is included with source code under
pc-bios/. It also includes RTAS blob.
This implements a handful of CI methods just to get -kernel/-initrd
working. In particular, this implements the device tree fetching and
simple memory allocator - "claim" (an OF CI memory allocator) and updates
"/memory@0/available" to report the client about available memory.
This implements changing some device tree properties which we know how
to deal with, the rest is ignored. To allow changes, this skips
fdt_pack() when x-vof=on as not packing the blob leaves some room for
appending.
In absence of SLOF, this assigns phandles to device tree nodes to make
device tree traversing work.
When x-vof=on, this adds "/chosen" every time QEMU (re)builds a tree.
This adds basic instances support which are managed by a hash map
ihandle -> [phandle].
Before the guest started, the used memory is:
0..e60 - the initial firmware
8000..10000 - stack
400000.. - kernel
3ea0000.. - initramdisk
This OF CI does not implement "interpret".
Unlike SLOF, this does not format uninitialized nvram. Instead, this
includes a disk image with pre-formatted nvram.
With this basic support, this can only boot into kernel directly.
However this is just enough for the petitboot kernel and initradmdisk to
boot from any possible source. Note this requires reasonably recent guest
kernel with:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df5be5be8735
The immediate benefit is much faster booting time which especially
crucial with fully emulated early CPU bring up environments. Also this
may come handy when/if GRUB-in-the-userspace sees light of the day.
This separates VOF and sPAPR in a hope that VOF bits may be reused by
other POWERPC boards which do not support pSeries.
This assumes potential support for booting from QEMU backends
such as blockdev or netdev without devices/drivers used.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20210625055155.2252896-1-aik@ozlabs.ru>
Reviewed-by: BALATON Zoltan <balaton@eik.bme.hu>
[dwg: Adjusted some includes which broke compile in some more obscure
compilation setups]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>