Commit Graph

136 Commits

Author SHA1 Message Date
Lucas Mateus Castro (alqotel)
80eca687c8 target/ppc: moved vector even and odd multiplication to decodetree
Moved the instructions vmulesb, vmulosb, vmuleub, vmuloub,
vmulesh, vmulosh, vmuleuh, vmulouh, vmulesw, vmulosw,
muleuw and vmulouw from legacy to decodetree. Implemented
the instructions vmulesd, vmulosd, vmuleud, vmuloud.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Lucas Mateus Castro (alqotel) <lucas.araujo@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20220225210936.1749575-3-matheus.ferst@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-03-02 06:51:36 +01:00
Richard Henderson
8929906e21 tcg: Remove dh_alias indirection for dh_typecode
The dh_alias redirect is intended to handle TCG types as distinguished
from C types.  TCG does not distinguish signed int from unsigned int,
because they are the same size.  However, we need to retain this
distinction for dh_typecode, lest we fail to extend abi types properly
for the host call parameters.

This bug was detected when running the 'arm' emulator on an s390
system. The s390 uses TCG_TARGET_EXTEND_ARGS which triggers code
in tcg_gen_callN to extend 32 bit values to 64 bits; the incorrect
sign data in the typemask for each argument caused the values to be
extended as unsigned values.

This simple program exhibits the problem:

	static volatile int num = -9;
	static volatile int den = -5;
	int main(void)
	{
		int quo = num / den;
		printf("num %d den %d quo %d\n", num, den, quo);
		exit(0);
	}

When run on the broken qemu, this results in:

	num -9 den -5 quo 0

The correct result is:

	num -9 den -5 quo 1

Fixes: 7319d83a73 ("tcg: Combine dh_is_64bit and dh_is_signed to dh_typecode")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/876
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reported-by: Christian Ehrhardt <christian.ehrhardt@canonical.com>
Tested-by: Christian Ehrhardt <christian.ehrhardt@canonical.com>
Tested-by: Keith Packard <keithp@keithp.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2022-02-28 08:04:06 -10:00
Cédric Le Goater
005b69fdcc target/ppc: Remove PowerPC 601 CPUs
The PowerPC 601 processor is the first generation of processors to
implement the PowerPC architecture. It was designed as a bridge
processor and also could execute most of the instructions of the
previous POWER architecture. It was found on the first Macs and IBM
RS/6000 workstations.

There is not much interest in keeping the CPU model of this
POWER-PowerPC bridge processor. We have the 603 and 604 CPU models of
the 60x family which implement the complete PowerPC instruction set.

Cc: "Hervé Poussineau" <hpoussin@reactos.org>
Cc: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220203142756.1302515-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-02-09 09:08:55 +01:00
Cédric Le Goater
4537d62dce target/ppc: Remove support for the PowerPC 602 CPU
The 602 was derived from the PowerPC 603, for the gaming market it
seems. It was hardly used and no firmware supporting the CPU could be
found. Drop support.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-01-28 21:38:17 +01:00
Cédric Le Goater
47822486f5 ppc/ppc405: Fix TLB flushing
Commit cd0c6f4735 did not take into account 405 CPUs when adding
support to batching of TCG tlb flushes. Set the TLB_NEED_LOCAL_FLUSH
flag when the SPR_40x_PID is set or a TLB updated.

Cc: Thomas Huth <thuth@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Fixes: cd0c6f4735 ("ppc: Do some batching of TCG tlb flushes")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220113180352.1234512-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-01-28 13:15:03 +01:00
Cédric Le Goater
328c95fc7d target/ppc: Finish removal of 401/403 CPUs
Commit c8f49e6b93 ("target/ppc: remove 401/403 CPUs") left a few
things behind.

Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220117091541.1615807-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220118104150.1899661-3-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-01-18 12:56:30 +01:00
Cédric Le Goater
cbd8f17d16 ppc/ppc405: Restore TCR and STR write handlers
The 405 timers were broken when booke support was added. Assumption
was made that the register numbers were the same but it's not :

    SPR_BOOKE_TSR         (0x150)
    SPR_BOOKE_TCR         (0x154)
    SPR_40x_TSR           (0x3D8)
    SPR_40x_TCR           (0x3DA)

Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Fixes: ddd1055b07 ("PPC: booke timers")
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211222064025.1541490-5-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220103063441.3424853-6-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-01-04 07:55:34 +01:00
Daniel Henrique Barboza
1f26c75191 PPC64/TCG: Implement 'rfebb' instruction
An Event-Based Branch (EBB) allows applications to change the NIA when a
event-based exception occurs. Event-based exceptions are enabled by
setting the Branch Event Status and Control Register (BESCR). If the
event-based exception is enabled when the exception occurs, an EBB
happens.

The following operations happens during an EBB:

- Global Enable (GE) bit of BESCR is set to 0;
- bits 0-61 of the Event-Based Branch Return Register (EBBRR) are set
to the the effective address of the NIA that would have executed if the EBB
didn't happen;
- Instruction fetch and execution will continue in the effective address
contained in the Event-Based Branch Handler Register (EBBHR).

The EBB Handler will process the event and then execute the Return From
Event-Based Branch (rfebb) instruction. rfebb sets BESCR_GE and then
redirects execution to the address pointed in EBBRR. This process is
described in the PowerISA v3.1, Book II, Chapter 6 [1].

This patch implements the rfebb instruction. Descriptions of all
relevant BESCR bits are also added - this patch is only using BESCR_GE,
but the next patches will use the remaining bits.

[1] https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-9-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:19 +01:00
Daniel Henrique Barboza
46d396bde9 target/ppc: enable PMU instruction count
The PMU is already counting cycles by calculating time elapsed in
nanoseconds. Counting instructions is a different matter and requires
another approach.

This patch adds the capability of counting completed instructions (Perf
event PM_INST_CMPL) by counting the amount of instructions translated in
each translation block right before exiting it.

A new pmu_count_insns() helper in translation.c was added to do that.
After verifying that the PMU is counting instructions, call
helper_insns_inc(). This new helper from power8-pmu.c will add the
instructions to the relevant counters. It'll also be responsible for
triggering counter negative overflows as it is already being done with
cycles.

To verify whether the PMU is counting instructions or now, a new hflags
named 'HFLAGS_INSN_CNT' is introduced. This flag will match the internal
state of the PMU. We're be using this flag to avoid calling
helper_insn_inc() when we do not have a valid instruction event being
sampled.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-7-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00
Daniel Henrique Barboza
a6f91249e0 target/ppc: PMU: update counters on MMCR1 write
MMCR1 determines the events to be sampled by the PMU. Updating the
counters at every MMCR1 write ensures that we're not sampling more
or less events by looking only at MMCR0 and the PMCs.

It is worth noticing that both the Book3S PowerPC PMU, and this IBM
Power8+ PMU that we're modeling, also uses MMCRA, MMCR2 and MMCR3 to
control the PMU. These three registers aren't being handled in this
initial implementation, so for now we're controlling all the PMU
aspects using MMCR0, MMCR1 and the PMCs.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-5-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00
Daniel Henrique Barboza
308b9fad2a target/ppc: PMU: update counters on PMCs r/w
Calling pmu_update_cycles() on every PMC read/write operation ensures
that the values being fetched are up to date with the current PMU state.

In theory we can get away by just trapping PMCs reads, but we're going
to trap PMC writes to deal with counter overflow logic later on.  Let's
put the required wiring for that and make our lives a bit easier in the
next patches.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-4-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00
Daniel Henrique Barboza
c2eff582a3 target/ppc: PMU basic cycle count for pseries TCG
This patch adds the barebones of the PMU logic by enabling cycle
counting. The overall logic goes as follows:

- MMCR0 reg initial value is set to 0x80000000 (MMCR0_FC set) to avoid
having to spin the PMU right at system init;

- to retrieve the events that are being profiled, pmc_get_event() will
check the current MMCR0 and MMCR1 value and return the appropriate
PMUEventType. For PMCs 1-4, event 0x2 is the implementation dependent
value of PMU_EVENT_INSTRUCTIONS and event 0x1E is the implementation
dependent value of PMU_EVENT_CYCLES. These events are supported by IBM
Power chips since Power8, at least, and the Linux Perf driver makes use
of these events until kernel v5.15. For PMC1, event 0xF0 is the
architected PowerISA event for cycles. Event 0xFE is the architected
PowerISA event for instructions;

- if the counter is frozen, either via the global MMCR0_FC bit or its
individual frozen counter bits, PMU_EVENT_INACTIVE is returned;

- pmu_update_cycles() will go through each counter and update the
values of all PMCs that are counting cycles. This function will be
called every time a MMCR0 update is done to keep counters values
up to date. Upcoming patches will use this function to allow the
counters to be properly updated during read/write of the PMCs
and MMCR1 writes.

Given that the base CPU frequency is fixed at 1Ghz for both powernv and
pseries clock, cycle calculation assumes that 1 nanosecond equals 1 CPU
cycle. Cycle value is then calculated by adding the elapsed time, in
nanoseconds, of the last cycle update done via pmu_update_cycles().

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-3-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00
Matheus Ferst
caf6f9b568 target/ppc: move xscvqpdp to decodetree
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211213120958.24443-5-victor.colombo@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00
Victor Colombo
201fc774e0 target/ppc: Fix xs{max, min}[cj]dp to use VSX registers
PPC instruction xsmaxcdp, xsmincdp, xsmaxjdp, and xsminjdp are using
vector registers when they should be using VSX ones. This happens
because the instructions are using GEN_VSX_HELPER_R3, which adds 32
to the register numbers, effectively making them vector registers.

This patch fixes it by changing these instructions to use
GEN_VSX_HELPER_X3.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Victor Colombo <victor.colombo@eldorado.org.br>
Message-Id: <20211213120958.24443-2-victor.colombo@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00
Fabiano Rosas
a09410ed1f target/ppc: Remove the software TLB model of 7450 CPUs
(Applies to 7441, 7445, 7450, 7451, 7455, 7457, 7447, 7447a and 7448)

The QEMU-side software TLB implementation for the 7450 family of CPUs
is being removed due to lack of known users in the real world. The
last users in the code were removed by the two previous commits.

A brief history:

The feature was added in QEMU by commit 7dbe11acd8 ("Handle all MMU
models in switches...") with the mention that Linux was not able to
handle the TLB miss interrupts and the MMU model would be kept
disabled.

At some point later, commit 8ca3f6c382 ("Allow selection of all
defined PowerPC 74xx (aka G4) CPUs.") enabled the model for the 7450
family without further justification.

We have since the year 2011 [1] been unable to run OpenBIOS in the
7450s and have not heard of any other software that is used with those
CPUs in QEMU. Attempts were made to find a guest OS that implemented
the TLB miss handlers and none were found among Linux 5.15, FreeBSD 13,
MacOS9, MacOSX and MorphOS 3.15.

All CPUs that registered this feature were moved to an MMU model that
replaces the software TLB with a QEMU hardware TLB
implementation. They can now run the same software as the 7400 CPUs,
including the OSes mentioned above.

References:

- https://bugs.launchpad.net/qemu/+bug/812398
  https://gitlab.com/qemu-project/qemu/-/issues/86

- https://lists.nongnu.org/archive/html/qemu-ppc/2021-11/msg00289.html
  message id: 20211119134431.406753-1-farosas@linux.ibm.com

Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211130230123.781844-4-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:16 +01:00
Richard Henderson
dedbfda765 target/ppc: Add helper for frsqrtes
There is no double-rounding bug here, because the result is
merely an estimate to within 1 part in 32, but perform the
operation with float64r32_div for consistency.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211119160502.17432-33-richard.henderson@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:16 +01:00
Richard Henderson
7f87214e3b target/ppc: Add helper for fmuls
Use float64r32_mul.  Fixes a double-rounding issue with performing
the compuation in float64 and then rounding afterward.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211119160502.17432-32-richard.henderson@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:16 +01:00
Richard Henderson
d9e792a1c1 target/ppc: Add helpers for fadds, fsubs, fdivs
Use float64r32_{add,sub,div}.  Fixes a double-rounding issue with
performing the compuation in float64 and then rounding afterward.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211119160502.17432-31-richard.henderson@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:16 +01:00
Richard Henderson
41ae890d08 target/ppc: Add helper for fsqrts
Use float64r32_sqrt.  Fixes a double-rounding issue with performing
the compuation in float64 and then rounding afterward.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211119160502.17432-30-richard.henderson@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:16 +01:00
Richard Henderson
d04ca895dc target/ppc: Add helpers for fmadds et al
Use float64r32_muladd.  Fixes a double-rounding issue with performing
the compuation in float64 and then rounding afterward.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211119160502.17432-29-richard.henderson@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:16 +01:00
Lucas Mateus Castro (alqotel)
c3a824b0cf target/ppc: Fixed call to deferred exception
mtfsf, mtfsfi and mtfsb1 instructions call helper_float_check_status
after updating the value of FPSCR, but helper_float_check_status
checks fp_status and fp_status isn't updated based on FPSCR and
since the value of fp_status is reset earlier in the instruction,
it's always 0.

Because of this helper_float_check_status would change the FI bit to 0
as this bit checks if the last operation was inexact and
float_flag_inexact is always 0.

These instructions also don't throw exceptions correctly since
helper_float_check_status throw exceptions based on fp_status.

This commit created a new helper, helper_fpscr_check_status that checks
FPSCR value instead of fp_status and checks for a larger variety of
exceptions than do_float_check_status.

Since fp_status isn't used, gen_reset_fpstatus() was removed.

The hardware used to compare QEMU's behavior to was a Power9.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Lucas Mateus Castro (alqotel) <lucas.araujo@eldorado.org.br>
Message-Id: <20211201163808.440385-2-lucas.araujo@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:12 +01:00
Matheus Ferst
788c63998c target/ppc: Implement xxblendvb/xxblendvh/xxblendvw/xxblendvd instructions
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Bruno Larsen (billionai) <bruno.larsen@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-24-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:53 +11:00
Matheus Ferst
28110b72a8 target/ppc: Implement Vector Extract Double to VSR using GPR index insns
Implement the following PowerISA v3.1 instructions:
vextdubvlx: Vector Extract Double Unsigned Byte to VSR using
            GPR-specified Left-Index
vextduhvlx: Vector Extract Double Unsigned Halfword to VSR using
            GPR-specified Left-Index
vextduwvlx: Vector Extract Double Unsigned Word to VSR using
            GPR-specified Left-Index
vextddvlx: Vector Extract Double Doubleword to VSR using
           GPR-specified Left-Index
vextdubvrx: Vector Extract Double Unsigned Byte to VSR using
            GPR-specified Right-Index
vextduhvrx: Vector Extract Double Unsigned Halfword to VSR using
            GPR-specified Right-Index
vextduwvrx: Vector Extract Double Unsigned Word to VSR using
            GPR-specified Right-Index
vextddvrx: Vector Extract Double Doubleword to VSR using
           GPR-specified Right-Index

Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-10-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Matheus Ferst
b422c2cb52 target/ppc: Move vinsertb/vinserth/vinsertw/vinsertd to decodetree
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-9-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Matheus Ferst
2cc12af399 target/ppc: Implement Vector Insert from GPR using GPR index insns
Implements the following PowerISA v3.1 instructions:
vinsblx: Vector Insert Byte from GPR using GPR-specified Left-Index
vinshlx: Vector Insert Halfword from GPR using GPR-specified Left-Index
vinswlx: Vector Insert Word from GPR using GPR-specified Left-Index
vinsdlx: Vector Insert Doubleword from GPR using GPR-specified
         Left-Index
vinsbrx: Vector Insert Byte from GPR using GPR-specified Right-Index
vinshrx: Vector Insert Halfword from GPR using GPR-specified
         Right-Index
vinswrx: Vector Insert Word from GPR using GPR-specified Right-Index
vinsdrx: Vector Insert Doubleword from GPR using GPR-specified
         Right-Index

The helpers and do_vinsx receive i64 to allow code sharing with the
future implementation of Vector Insert from VSR using GPR Index.

Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-6-matheus.ferst@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Matheus Ferst
00a16569eb target/ppc: Implement vpdepd/vpextd instruction
pdepd and pextd helpers are moved out of #ifdef (TARGET_PPC64) to allow
them to be reused as GVecGen3.fni8.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-4-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Matheus Ferst
6e0bbc4048 target/ppc: Move vcfuged to vmx-impl.c.inc
There's no reason to keep vector-impl.c.inc separate from
vmx-impl.c.inc. Additionally, let GVec handle the multiple calls to
helper_cfuged for us.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-2-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
a23297479c target/ppc: Move ddedpd[q],denbcd[q],dscli[q],dscri[q] to decodetree
Move the following instructions to decodetree:
ddedpd:  DFP Decode DPD To BCD
ddedpdq: DFP Decode DPD To BCD Quad
denbcd:  DFP Encode BCD To DPD
denbcdq: DFP Encode BCD To DPD Quad
dscli:   DFP Shift Significand Left Immediate
dscliq:  DFP Shift Significand Left Immediate Quad
dscri:   DFP Shift Significand Right Immediate
dscriq:  DFP Shift Significand Right Immediate Quad

Also deleted dfp-ops.c.inc, now that all PPC DFP instructions were
moved to decodetree.

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-16-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
c8ef4d1ec0 target/ppc: Move dct{dp,qpq},dr{sp,dpq},dc{f,t}fix[q],dxex[q] to decodetree
Move the following instructions to decodetree:
dctdp:   DFP Convert To DFP Long
dctqpq:  DFP Convert To DFP Extended
drsp:    DFP Round To DFP Short
drdpq:   DFP Round To DFP Long
dcffix:  DFP Convert From Fixed
dcffixq: DFP Convert From Fixed Quad
dctfix:  DFP Convert To Fixed
dctfixq: DFP Convert To Fixed Quad
dxex:    DFP Extract Biased Exponent
dxexq:   DFP Extract Biased Exponent Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-15-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
a8f4bce6f8 target/ppc: Move dqua[q], drrnd[q] to decodetree
Move the following instructions to decodetree:
dqua:   DFP Quantize
dquaq:  DFP Quantize Quad
drrnd:  DFP Reround
drrndq: DFP Reround Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-14-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
78464edb8f target/ppc: Move dquai[q], drint{x,n}[q] to decodetree
Move the following instructions to decodetree:
dquai:   DFP Quantize Immediate
dquaiq:  DFP Quantize Immediate Quad
drintx:  DFP Round to FP Integer With Inexact
drintxq: DFP Round to FP Integer With Inexact Quad
drintn:  DFP Round to FP Integer Without Inexact
drintnq: DFP Round to FP Integer Without Inexact Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-13-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
85c38a460c target/ppc: Move dcmp{u,o}[q],dts{tex,tsf,tsfi}[q] to decodetree
Move the following instructions to decodetree:
dcmpu:    DFP Compare Unordered
dcmpuq:   DFP Compare Unordered Quad
dcmpo:    DFP Compare Ordered
dcmpoq:   DFP Compare Ordered Quad
dtstex:   DFP Test Exponent
dtstexq:  DFP Test Exponent Quad
dtstsf:   DFP Test Significance
dtstsfq:  DFP Test Significance Quad
dtstsfi:  DFP Test Significance Immediate
dtstsfiq: DFP Test Significance Immediate Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-12-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
afdc931013 target/ppc: Move d{add,sub,mul,div,iex}[q] to decodetree
Move the following instructions to decodetree:
dadd:  DFP Add
daddq: DFP Add Quad
dsub:  DFP Subtract
dsubq: DFP Subtract Quad
dmul:  DFP Multiply
dmulq: DFP Multiply Quad
ddiv:  DFP Divide
ddivq: DFP Divide Quad
diex:  DFP Insert Biased Exponent
diexq: DFP Insert Biased Exponent Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-11-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
87bc8e52b1 target/ppc: Move dtstdc[q]/dtstdg[q] to decodetree
Move the following instructions to decodetree:
dtstdc:  DFP Test Data Class
dtstdcq: DFP Test Data Class Quad
dtstdg:  DFP Test Data Group
dtstdgq: DFP Test Data Group Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-10-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
328747f32f target/ppc: Implement DCTFIXQQ
Implement the following PowerISA v3.1 instruction:
dctfixqq: DFP Convert To Fixed Quadword Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-8-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Luis Pires
d39b2cc7d0 target/ppc: Implement DCFFIXQQ
Implement the following PowerISA v3.1 instruction:
dcffixqq: DFP Convert From Fixed Quadword Quad

Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-5-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Matheus Ferst
8bdb760606 target/ppc: Implement pextd instruction
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211029202424.175401-11-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Matheus Ferst
21ba6e5873 target/ppc: Implement pdepd instruction
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211029202424.175401-10-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-11-09 10:32:52 +11:00
Richard Henderson
7319d83a73 tcg: Combine dh_is_64bit and dh_is_signed to dh_typecode
We will shortly be interested in distinguishing pointers
from integers in the helper's declaration, as well as a
true void return.  We currently have two parallel 1 bit
fields; merge them and expand to a 3 bit field.

Our current maximum is 7 helper arguments, plus the return
makes 8 * 3 = 24 bits used within the uint32_t typemask.

Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-06-19 08:51:11 -07:00
Matheus Ferst
89ccd7dc3f target/ppc: Implement cfuged instruction
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20210601193528.2533031-12-matheus.ferst@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-06-03 18:10:31 +10:00
Richard Henderson
46a0add975 target/ppc: Mark helper_raise_exception* as noreturn
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20210517205025.3777947-8-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-05-19 10:30:29 +10:00
Richard Henderson
f43520e5b2 target/ppc: Create helper_scv
Perform the test against FSCR_SCV at runtime, in the helper.

This means we can remove the incorrect set against SCV in
ppc_tr_init_disas_context and do not need to add an HFLAGS bit.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210323184340.619757-6-richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-05-04 11:41:24 +10:00
Lijun Pan
c4b8b49d68 target/ppc: add vmulh{su}d instructions
vmulhsd: Vector Multiply High Signed Doubleword
vmulhud: Vector Multiply High Unsigned Doubleword

Signed-off-by: Lijun Pan <ljp@linux.ibm.com>
Message-Id: <20200724045845.89976-5-ljp@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-08-12 13:16:27 +10:00
Lijun Pan
f3e0d864ab target/ppc: add vmulh{su}w instructions
vmulhsw: Vector Multiply High Signed Word
vmulhuw: Vector Multiply High Unsigned Word

Signed-off-by: Lijun Pan <ljp@linux.ibm.com>
Message-Id: <20200724045845.89976-4-ljp@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-08-12 13:16:27 +10:00
Lijun Pan
a285ffa680 target/ppc: convert vmuluwm to tcg_gen_gvec_mul
Convert the original implementation of vmuluwm to the more generic
tcg_gen_gvec_mul.

Signed-off-by: Lijun Pan <ljp@linux.ibm.com>
Message-Id: <20200701234344.91843-5-ljp@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-08-12 13:16:27 +10:00
Richard Henderson
3e114acc91 target/ppc: Use tcg_gen_gvec_rotlv
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2020-06-02 08:42:37 -07:00
Nicholas Piggin
3c89b8d6ac target/ppc: Add support for scv and rfscv instructions
POWER9 adds scv and rfscv instructions and the system call vectored
interrupt. Linux does not support this instruction yet but it has
been tested with a modified kernel that runs on real hardware.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20200507115328.789175-1-npiggin@gmail.com>
[dwg: Corrected an overlong line]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-05-27 15:29:24 +10:00
Nicholas Piggin
0418bf78fe target/ppc: Fix ISA v3.0 (POWER9) slbia implementation
The new ISA v3.0 slbia variants have not been implemented for TCG,
which can lead to crashing when a POWER9 machine boots Linux using
the hash MMU, for example ("disable_radix" kernel command line).

Add them.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20200319064439.1020571-1-npiggin@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fixed compile error for USER_ONLY builds]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-03-24 11:56:14 +11:00
Cédric Le Goater
5ba7ba1da0 target/ppc: Add privileged message send facilities
The Processor Control facility for POWER8 processors and later
provides a mechanism for the hypervisor to send messages to other
threads in the system (msgsnd instruction) and cause hypervisor-level
exceptions. Privileged non-hypervisor programs can also send messages
(msgsndp instruction) but are restricted to the threads of the same
subprocessor and cause privileged-level exceptions.

The Directed Privileged Doorbell Exception State (DPDES) register
reflects the state of pending privileged doorbell exceptions and can
be used to modify that state. The register can be used to read and
modify the state of privileged doorbell exceptions for all threads of
a subprocessor and thus is a shared facility for that subprocessor.
The register can be read/written by the hypervisor and read by the
supervisor if enabled in the HFSCR, otherwise a hypervisor facility
unavailable exception is generated.

The privileged message send and clear instructions (msgsndp & msgclrp)
are used to generate and clear the presence of a directed privileged
doorbell exception, respectively. The msgsndp instruction can be used
to target any thread of the current subprocessor, msgclrp acts on the
thread issuing the instruction. These instructions are privileged, but
will generate a hypervisor facility unavailable exception if not
enabled in the HFSCR and executed in privileged non-hypervisor
state. The HV facility unavailable exception will be addressed in
other patch.

Add and implement this register and instructions by reading or
modifying the pending interrupt state of the cpu.

Note that TCG only supports one thread per core and so we only need to
worry about the cpu making the access.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20200120104935.24449-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-02 14:07:57 +11:00
Suraj Jitindar Singh
f0ec31b1e2 target/ppc: Add SPR TBU40
The spr TBU40 is used to set the upper 40 bits of the timebase
register, present on POWER5+ and later processors.

This register can only be written by the hypervisor, and cannot be read.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191128134700.16091-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-12-17 10:39:48 +11:00