Only the migration_bitmap_sync() call needs the iothread lock.
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
This makes it possible to do blocking writes directly to the socket,
with no buffer in the middle. For RAM, only the migration_bitmap_sync()
call needs the iothread lock. For block migration, it is needed by
the block layer (including bdrv_drain_all and dirty bitmap access),
but because some code is shared between iterate and complete, all of
mig_save_device_dirty is run with the lock taken.
In the savevm case, the iterate callback runs within the big lock.
This is annoying because it complicates the rules. Luckily we do not
need to do anything about it: the RAM iterate callback does not need
the iothread lock, and block migration never runs during savevm.
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
This groups together the callbacks that later will have similar
locking rules.
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
Code just now does (simplified for clarity)
if (qemu_savevm_state_iterate(s->file) == 1) {
vm_stop_force_state(RUN_STATE_FINISH_MIGRATE);
qemu_savevm_state_complete(s->file);
}
Problem here is that qemu_savevm_state_iterate() returns 1 when it
knows that remaining memory to sent takes less than max downtime.
But this means that we could end spending 2x max_downtime, one
downtime in qemu_savevm_iterate, and the other in
qemu_savevm_state_complete.
Changed code to:
pending_size = qemu_savevm_state_pending(s->file, max_size);
DPRINTF("pending size %lu max %lu\n", pending_size, max_size);
if (pending_size >= max_size) {
ret = qemu_savevm_state_iterate(s->file);
} else {
vm_stop_force_state(RUN_STATE_FINISH_MIGRATE);
qemu_savevm_state_complete(s->file);
}
So what we do is: at current network speed, we calculate the maximum
number of bytes we can sent: max_size.
Then we ask every save_live section how much they have pending. If
they are less than max_size, we move to complete phase, otherwise we
do an iterate one.
This makes things much simpler, because now individual sections don't
have to caluclate the bandwidth (it was implossible to do right from
there).
Signed-off-by: Juan Quintela <quintela@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>