KVM_HC_MAP_GPA_RANGE will be used to send requests to userspace for
private/shared memory attribute updates requested by the guest.
Implement handling for that use-case along with some basic
infrastructure for enabling specific hypercall events.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Pankaj Gupta <pankaj.gupta@amd.com>
Message-ID: <20240530111643.1091816-31-pankaj.gupta@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM is introducing a new API to create confidential guests, which
will be used by TDX and SEV-SNP but is also available for SEV and
SEV-ES. The API uses the VM type argument to KVM_CREATE_VM to
identify which confidential computing technology to use.
Since there are no other expected uses of VM types, delegate
mc->kvm_type() for x86 boards to the confidential-guest-support
object pointed to by ms->cgs.
For example, if a sev-guest object is specified to confidential-guest-support,
like,
qemu -machine ...,confidential-guest-support=sev0 \
-object sev-guest,id=sev0,...
it will check if a VM type KVM_X86_SEV_VM or KVM_X86_SEV_ES_VM
is supported, and if so use them together with the KVM_SEV_INIT2
function of the KVM_MEMORY_ENCRYPT_OP ioctl. If not, it will fall back to
KVM_SEV_INIT and KVM_SEV_ES_INIT.
This is a preparatory work towards TDX and SEV-SNP support, but it
will also enable support for VMSA features such as DebugSwap, which
are only available via KVM_SEV_INIT2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This was introduced in KVM in Linux 2.6.33, we can require it
unconditionally. KVM_CLOCK_TSC_STABLE was only added in Linux 4.9,
for now do not require it (though it would allow the removal of some
pretty yucky code).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_pc_setup_irq_routing() is only defined for x86 targets (in
hw/i386/kvm/apic.c). Its declaration is pointless on all
other targets.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230904124325.79040-14-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_has_pit_state2() is only defined for x86 targets (in
target/i386/kvm/kvm.c). Its declaration is pointless on
all other targets. Have it return a boolean.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230904124325.79040-13-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_get_apic_state() is only defined for x86 targets (in
hw/i386/kvm/apic.c). Its declaration is pointless on all
other targets.
Since we include "linux-headers/asm-x86/kvm.h", no need
to forward-declare 'struct kvm_lapic_state'.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230904124325.79040-12-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_get_supported_cpuid() / kvm_arch_get_supported_msr_feature()
are only defined for x86 targets (in target/i386/kvm/kvm.c). Their
declarations are pointless on other targets.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230904124325.79040-11-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Keep the function accessed by target/i386/ and hw/i386/
exposed, restrict the ones accessed by target/i386/kvm/.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230904124325.79040-10-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to have cpu-sysemu.c become accelerator-agnostic,
inline kvm_apic_in_kernel() -- which is a simple wrapper
to kvm_irqchip_in_kernel() -- and use the generic "sysemu/kvm.h"
header.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230904124325.79040-6-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The way that Xen handles MSI PIRQs is kind of awful.
There is a special MSI message which targets a PIRQ. The vector in the
low bits of data must be zero. The low 8 bits of the PIRQ# are in the
destination ID field, the extended destination ID field is unused, and
instead the high bits of the PIRQ# are in the high 32 bits of the address.
Using the high bits of the address means that we can't intercept and
translate these messages in kvm_send_msi(), because they won't be caught
by the APIC — addresses like 0x1000fee46000 aren't in the APIC's range.
So we catch them in pci_msi_trigger() instead, and deliver the event
channel directly.
That isn't even the worst part. The worst part is that Xen snoops on
writes to devices' MSI vectors while they are *masked*. When a MSI
message is written which looks like it targets a PIRQ, it remembers
the device and vector for later.
When the guest makes a hypercall to bind that PIRQ# (snooped from a
marked MSI vector) to an event channel port, Xen *unmasks* that MSI
vector on the device. Xen guests using PIRQ delivery of MSI don't
ever actually unmask the MSI for themselves.
Now that this is working we can finally enable XENFEAT_hvm_pirqs and
let the guest use it all.
Tested with passthrough igb and emulated e1000e + AHCI.
CPU0 CPU1
0: 65 0 IO-APIC 2-edge timer
1: 0 14 xen-pirq 1-ioapic-edge i8042
4: 0 846 xen-pirq 4-ioapic-edge ttyS0
8: 1 0 xen-pirq 8-ioapic-edge rtc0
9: 0 0 xen-pirq 9-ioapic-level acpi
12: 257 0 xen-pirq 12-ioapic-edge i8042
24: 9600 0 xen-percpu -virq timer0
25: 2758 0 xen-percpu -ipi resched0
26: 0 0 xen-percpu -ipi callfunc0
27: 0 0 xen-percpu -virq debug0
28: 1526 0 xen-percpu -ipi callfuncsingle0
29: 0 0 xen-percpu -ipi spinlock0
30: 0 8608 xen-percpu -virq timer1
31: 0 874 xen-percpu -ipi resched1
32: 0 0 xen-percpu -ipi callfunc1
33: 0 0 xen-percpu -virq debug1
34: 0 1617 xen-percpu -ipi callfuncsingle1
35: 0 0 xen-percpu -ipi spinlock1
36: 8 0 xen-dyn -event xenbus
37: 0 6046 xen-pirq -msi ahci[0000:00:03.0]
38: 1 0 xen-pirq -msi-x ens4
39: 0 73 xen-pirq -msi-x ens4-rx-0
40: 14 0 xen-pirq -msi-x ens4-rx-1
41: 0 32 xen-pirq -msi-x ens4-tx-0
42: 47 0 xen-pirq -msi-x ens4-tx-1
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Specify maximum possible APIC ID assigned for current VM session to KVM
prior to the creation of vCPUs. By this setting, KVM can set up VM-scoped
data structure indexed by the APIC ID, e.g. Posted-Interrupt Descriptor
pointer table to support Intel IPI virtualization, with the most optimal
memory footprint.
It can be achieved by calling KVM_ENABLE_CAP for KVM_CAP_MAX_VCPU_ID
capability once KVM has enabled it. Ignoring the return error if KVM
doesn't support this capability yet.
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Message-Id: <20220825025246.26618-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Resetting a guest that has Hyper-V VMBus support enabled triggers a QEMU
assertion failure:
hw/hyperv/hyperv.c:131: synic_reset: Assertion `QLIST_EMPTY(&synic->sint_routes)' failed.
This happens both on normal guest reboot or when using "system_reset" HMP
command.
The failing assertion was introduced by commit 64ddecc88b ("hyperv: SControl is optional to enable SynIc")
to catch dangling SINT routes on SynIC reset.
The root cause of this problem is that the SynIC itself is reset before
devices using SINT routes have chance to clean up these routes.
Since there seems to be no existing mechanism to force reset callbacks (or
methods) to be executed in specific order let's use a similar method that
is already used to reset another interrupt controller (APIC) after devices
have been reset - by invoking the SynIC reset from the machine reset
handler via a new x86_cpu_after_reset() function co-located with
the existing x86_cpu_reset() in target/i386/cpu.c.
Opportunistically move the APIC reset handler there, too.
Fixes: 64ddecc88b ("hyperv: SControl is optional to enable SynIc") # exposed the bug
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <cb57cee2e29b20d06f81dce054cbcea8b5d497e8.1664552976.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM has grown support to deflect arbitrary MSRs to user space since
Linux 5.10. For now we don't expect to make a lot of use of this
feature, so let's expose it the easiest way possible: With up to 16
individually maskable MSRs.
This patch adds a kvm_filter_msr() function that other code can call
to install a hook on KVM MSR reads or writes.
Signed-off-by: Alexander Graf <agraf@csgraf.de>
Message-Id: <20221004225643.65036-3-agraf@csgraf.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kernel allocates 4K xstate buffer by default. For XSAVE features
which require large state component (e.g. AMX), Linux kernel
dynamically expands the xstate buffer only after the process has
acquired the necessary permissions. Those are called dynamically-
enabled XSAVE features (or dynamic xfeatures).
There are separate permissions for native tasks and guests.
Qemu should request the guest permissions for dynamic xfeatures
which will be exposed to the guest. This only needs to be done
once before the first vcpu is created.
KVM implemented one new ARCH_GET_XCOMP_SUPP system attribute API to
get host side supported_xcr0 and Qemu can decide if it can request
dynamically enabled XSAVE features permission.
https://lore.kernel.org/all/20220126152210.3044876-1-pbonzini@redhat.com/
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Message-Id: <20220217060434.52460-4-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the guest want to fully use SGX, the guest needs to be able to
access provisioning key. Add a new KVM_CAP_SGX_ATTRIBUTE to KVM to
support provisioning key to KVM guests.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20210719112136.57018-14-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To make Hyper-V features appear in e.g. QMP query-cpu-model-expansion we
need to expand and set the corresponding CPUID leaves early. Modify
x86_cpu_get_supported_feature_word() to call newly intoduced Hyper-V
specific kvm_hv_get_supported_cpuid() instead of
kvm_arch_get_supported_cpuid(). We can't use kvm_arch_get_supported_cpuid()
as Hyper-V specific CPUID leaves intersect with KVM's.
Note, early expansion will only happen when KVM supports system wide
KVM_GET_SUPPORTED_HV_CPUID ioctl (KVM_CAP_SYS_HYPERV_CPUID).
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210608120817.1325125-6-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>