Commit Graph

163 Commits

Author SHA1 Message Date
Emilio G. Cota
44ded3d048 tcg: take tb_ctx out of TCGContext
Groundwork for supporting multiple TCG contexts.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:42 -07:00
Emilio G. Cota
be1e01171b exec-all: rename tb_free to tb_remove
We don't really free anything in this function anymore; we just remove
the TB from the binary search tree.

Suggested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:42 -07:00
Richard Henderson
416986d3f9 tcg: Remove CF_IGNORE_ICOUNT
Now that we have curr_cflags, we can include CF_USE_ICOUNT
early and then remove it as necessary.

Reviewed-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:42 -07:00
Emilio G. Cota
ac03ee5331 cpu-exec: lookup/generate TB outside exclusive region during step_atomic
Now that all code generation has been converted to check CF_PARALLEL, we can
generate !CF_PARALLEL code without having yet set !parallel_cpus --
and therefore without having to be in the exclusive region during
cpu_exec_step_atomic.

While at it, merge cpu_exec_step into cpu_exec_step_atomic.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:42 -07:00
Richard Henderson
9b990ee5a3 tcg: Add CPUState cflags_next_tb
We were generating code during tb_invalidate_phys_page_range,
check_watchpoint, cpu_io_recompile, and (seemingly) discarding
the TB, assuming that it would magically be picked up during
the next iteration through the cpu_exec loop.

Instead, record the desired cflags in CPUState so that we request
the proper TB so that there is no more magic.

Reviewed-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:41 -07:00
Emilio G. Cota
4e2ca83e71 tcg: define CF_PARALLEL and use it for TB hashing along with CF_COUNT_MASK
This will enable us to decouple code translation from the value
of parallel_cpus at any given time. It will also help us minimize
TB flushes when generating code via EXCP_ATOMIC.

Note that the declaration of parallel_cpus is brought to exec-all.h
to be able to define there the "curr_cflags" inline.

Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:41 -07:00
Emilio G. Cota
e7e168f413 exec-all: extract tb->tc_* into a separate struct tc_tb
In preparation for adding tc.size to be able to keep track of
TB's using the binary search tree implementation from glib.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-10 07:37:10 -07:00
Emilio G. Cota
84f1c148da exec-all: bring tb->invalid into tb->cflags
This gets rid of a hole in struct TranslationBlock.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-10 07:37:10 -07:00
Emilio G. Cota
f6bb84d531 tcg: consolidate TB lookups in tb_lookup__cpu_state
This avoids duplicating code. cpu_exec_step will also use the
new common function once we integrate parallel_cpus into tb->cflags.

Note that in this commit we also fix a race, described by Richard Henderson
during review. Think of this scenario with threads A and B:

   (A) Lookup succeeds for TB in hash without tb_lock
        (B) Sets the TB's tb->invalid flag
        (B) Removes the TB from tb_htable
        (B) Clears all CPU's tb_jmp_cache
   (A) Store TB into local tb_jmp_cache

Given that order of events, (A) will keep executing that invalid TB until
another flush of its tb_jmp_cache happens, which in theory might never happen.
We can fix this by checking the tb->invalid flag every time we look up a TB
from tb_jmp_cache, so that in the above scenario, next time we try to find
that TB in tb_jmp_cache, we won't, and will therefore be forced to look it
up in tb_htable.

Performance-wise, I measured a small improvement when booting debian-arm.
Note that inlining pays off:

 Performance counter stats for 'taskset -c 0 qemu-system-arm \
	-machine type=virt -nographic -smp 1 -m 4096 \
	-netdev user,id=unet,hostfwd=tcp::2222-:22 \
	-device virtio-net-device,netdev=unet \
	-drive file=jessie.qcow2,id=myblock,index=0,if=none \
	-device virtio-blk-device,drive=myblock \
	-kernel kernel.img -append console=ttyAMA0 root=/dev/vda1 \
	-name arm,debug-threads=on -smp 1' (10 runs):

Before:
      18714.917392 task-clock                #    0.952 CPUs utilized            ( +-  0.95% )
            23,142 context-switches          #    0.001 M/sec                    ( +-  0.50% )
                 1 CPU-migrations            #    0.000 M/sec
            10,558 page-faults               #    0.001 M/sec                    ( +-  0.95% )
    53,957,727,252 cycles                    #    2.883 GHz                      ( +-  0.91% ) [83.33%]
    24,440,599,852 stalled-cycles-frontend   #   45.30% frontend cycles idle     ( +-  1.20% ) [83.33%]
    16,495,714,424 stalled-cycles-backend    #   30.57% backend  cycles idle     ( +-  0.95% ) [66.66%]
    76,267,572,582 instructions              #    1.41  insns per cycle
                                             #    0.32  stalled cycles per insn  ( +-  0.87% ) [83.34%]
    12,692,186,323 branches                  #  678.186 M/sec                    ( +-  0.92% ) [83.35%]
       263,486,879 branch-misses             #    2.08% of all branches          ( +-  0.73% ) [83.34%]

      19.648474449 seconds time elapsed                                          ( +-  0.82% )

After, w/ inline (this patch):
      18471.376627 task-clock                #    0.955 CPUs utilized            ( +-  0.96% )
            23,048 context-switches          #    0.001 M/sec                    ( +-  0.48% )
                 1 CPU-migrations            #    0.000 M/sec
            10,708 page-faults               #    0.001 M/sec                    ( +-  0.81% )
    53,208,990,796 cycles                    #    2.881 GHz                      ( +-  0.98% ) [83.34%]
    23,941,071,673 stalled-cycles-frontend   #   44.99% frontend cycles idle     ( +-  0.95% ) [83.34%]
    16,161,773,848 stalled-cycles-backend    #   30.37% backend  cycles idle     ( +-  0.76% ) [66.67%]
    75,786,269,766 instructions              #    1.42  insns per cycle
                                             #    0.32  stalled cycles per insn  ( +-  1.24% ) [83.34%]
    12,573,617,143 branches                  #  680.708 M/sec                    ( +-  1.34% ) [83.33%]
       260,235,550 branch-misses             #    2.07% of all branches          ( +-  0.66% ) [83.33%]

      19.340502161 seconds time elapsed                                          ( +-  0.56% )

After, w/o inline:
      18791.253967 task-clock                #    0.954 CPUs utilized            ( +-  0.78% )
            23,230 context-switches          #    0.001 M/sec                    ( +-  0.42% )
                 1 CPU-migrations            #    0.000 M/sec
            10,563 page-faults               #    0.001 M/sec                    ( +-  1.27% )
    54,168,674,622 cycles                    #    2.883 GHz                      ( +-  0.80% ) [83.34%]
    24,244,712,629 stalled-cycles-frontend   #   44.76% frontend cycles idle     ( +-  1.37% ) [83.33%]
    16,288,648,572 stalled-cycles-backend    #   30.07% backend  cycles idle     ( +-  0.95% ) [66.66%]
    77,659,755,503 instructions              #    1.43  insns per cycle
                                             #    0.31  stalled cycles per insn  ( +-  0.97% ) [83.34%]
    12,922,780,045 branches                  #  687.702 M/sec                    ( +-  1.06% ) [83.34%]
       261,962,386 branch-misses             #    2.03% of all branches          ( +-  0.71% ) [83.35%]

      19.700174670 seconds time elapsed                                          ( +-  0.56% )

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-10 07:37:10 -07:00
Emilio G. Cota
841710c78e cpu-exec: rename have_tb_lock to acquired_tb_lock in tb_find
Reusing the have_tb_lock name, which is also defined in translate-all.c,
makes code reviewing unnecessarily harder.

Avoid potential confusion by renaming the local have_tb_lock variable
to something else.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-10 07:37:10 -07:00
Richard Henderson
a858339336 tcg: Move USE_DIRECT_JUMP discriminator to tcg/cpu/tcg-target.h
Replace the USE_DIRECT_JUMP ifdef with a TCG_TARGET_HAS_direct_jump
boolean test.  Replace the tb_set_jmp_target1 ifdef with an unconditional
function tb_target_set_jmp_target.

While we're touching all backends, add a parameter for tb->tc_ptr;
we're going to need it shortly for some backends.

Move tb_set_jmp_target and tb_add_jump from exec-all.h to cpu-exec.c.

This opens the possibility for TCG_TARGET_HAS_direct_jump to be
a runtime decision -- based on host cpu capabilities, the size of
code_gen_buffer, or a future debugging switch.

Signed-off-by: Richard Henderson <rth@twiddle.net>
2017-09-07 11:57:34 -07:00
Lluís Vilanova
61a67f71dd exec: [tcg] Use different TBs according to the vCPU's dynamic tracing state
Every vCPU now uses a separate set of TBs for each set of dynamic
tracing event state values. Each set of TBs can be used by any number of
vCPUs to maximize TB reuse when vCPUs have the same tracing state.

This feature is later used by tracetool to optimize tracing of guest
code events.

The maximum number of TB sets is defined as 2^E, where E is the number
of events that have the 'vcpu' property (their state is stored in
CPUState->trace_dstate).

For this to work, a change on the dynamic tracing state of a vCPU will
force it to flush its virtual TB cache (which is only indexed by
address), and fall back to the physical TB cache (which now contains the
vCPU's dynamic tracing state as part of the hashing function).

Signed-off-by: Lluís Vilanova <vilanova@ac.upc.edu>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Message-id: 149915775266.6295.10060144081246467690.stgit@frigg.lan
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-07-17 13:11:05 +01:00
Yang Zhong
d9bb58e510 tcg: move tcg related files into accel/tcg/ subdirectory
move cputlb.c, cpu-exec-common.c and cpu-exec.c related tcg exec
file into accel/tcg/ subdirectory.

Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <1496383606-18060-3-git-send-email-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-15 11:04:06 +02:00