PAPR compliant guest calls this in absence of kdump. This finally
reaches the guest and can be handled according to the policies set by
higher level tools(like taking dump) for further analysis by tools like
crash.
Linux kernel calls ibm,os-term when extended property of os-term is set.
This makes sure that a return to the linux kernel is gauranteed.
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
[agraf: reduce RTAS_TOKEN_MAX]
Signed-off-by: Alexander Graf <agraf@suse.de>
Add support for the SPLPAR Characteristics parameter to the emulated
RTAS call ibm,get-system-parameter.
The support provides just enough information to allow "cat
/proc/powerpc/lparcfg" to succeed without generating a kernel error
message.
Without this patch the above command will produce the following kernel
message: arch/powerpc/platforms/pseries/lparcfg.c \
parse_system_parameter_string Error calling get-system-parameter \
(0xfffffffd)
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add support for the UUID parameter to the emulated RTAS call
ibm,get-system-parameter.
Return the guest's UUID as the value for the RTAS UUID system
parameter, or null (a zero length result) if it is not set.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This allows the ibm,get-system-parameter RTAS call to succeed for the
DIAGNOSTICS_RUN_MODE system parameter.
The problem can be seen with "ppc64_cpu --run-mode" from the
powerpc-utils package which fails before this patch with "Machine does
not support diagnostic run mode".
This is corrected by using the rtas_st_buffer() function to write to
the buffer.
The RTAS constants are also moved out into a header file, some new
constants added and the surrounding code slightly simplified.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[agraf: remove some commentary]
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment spapr_rtas_register() allocates a new token number for every
new RTAS callback so numbers are not fixed and depend on the number of
supported RTAS handlers and the exact order of spapr_rtas_register() calls.
These tokens are copied into the device tree and remain the same during
the guest lifetime.
When we start another guest to receive a migration, it calls
spapr_rtas_register() as well. If the number of RTAS handlers or their
order is different in QEMU on source and destination sides, the "/rtas"
node in the device tree will differ. Since migration overwrites the device
tree (as it overwrites the entire RAM), the actual RTAS config on
the destination side gets broken.
This defines global contant values for every RTAS token which QEMU
is using today.
This changes spapr_rtas_register() to accept a token number instead of
allocating one. This changes all users of spapr_rtas_register().
This changes XICS-KVM not to cache tokens registered with KVM as they
constant now.
This makes TOKEN_BASE global as RTAS_XXX use TOKEN_BASE as
a base. TOKEN_MAX is moved and renamed too and its value is changed
to the last token + 1. Boundary checks for token values are adjusted.
This reserves token numbers for "os-term" handlers and PCI hotplug
which we are working on.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch also eliminates build time warning caused by no caller
of monitor_qapi_event_throttle().
Signed-off-by: Wenchao Xia <wenchaoqemu@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
This fixes warnings from the static code analysis (smatch).
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
This makes use of @cpu_dt_id and related API in:
1. emulated XICS hypercall handlers as they receive fixed CPU indexes;
2. XICS-KVM to enable in-kernel XICS on right CPU;
3. device-tree renderer.
This removes @cpu_index fixup as @cpu_dt_id is used instead so QEMU monitor
can accept command-line CPU indexes again.
This changes kvm_arch_vcpu_id() to use ppc_get_vcpu_dt_id() as at the moment
KVM CPU id and device tree ID are calculated using the same algorithm.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Mike Day <ncmike@ncultra.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
The qemu_devtree API is a wrapper around the fdt_ set of APIs.
Rename accordingly.
Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
[agraf: also convert hw/arm/virt.c]
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds very basic handlers for ibm,get-system-parameter and
ibm,set-system-parameter RTAS calls.
The only parameter handled at the moment is
"platform-processor-diagnostics-run-mode" which is always disabled and
does not support changing. This is expected to make
"ppc64_cpu --run-mode=1" happy.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: s/papameter/parameter/g]
Signed-off-by: Alexander Graf <agraf@suse.de>
PAPR+ requires two RTAS calls to be supported by the hypervisor in
order to allow hotplugging VCPUs from the guest. The "start-cpu" RTAS
call was already there but "stop-self" was not.
This adds the "stop-self" RTAS call.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
RTAS is a hypervisor provided binary blob that a guest loads and
calls into to execute certain functions. It's similar to the
vsyscall page in Linux or the short lived VMCI paravirt interface
from VMware.
The QEMU implementation of the RTAS blob is simply a passthrough
that proxies all RTAS calls to the hypervisor via an hypercall.
While we pass a CPU argument for hypercall handling in QEMU, we
don't pass it for RTAS calls. Since some RTAs calls require
making hypercalls (normally RTAS is implemented as guest code) we
have nasty hacks to allow that.
Add a CPU argument to RTAS call handling so we can more easily
invoke hypercalls just as guest code would.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
It no longer relies on CPUArchState since 20d695a.
Reviewed-by: liguang <lig.fnst@cn.fujitsu.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Instead of looping over all CPUArchState, use a helper to obtain the
desired CPUState.
Free the "cpu" variable for PowerPCCPU, to access its CPUPPCState.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Instead of looping over all CPUArchState, use a helper to obtain the
desired CPUState directly. Saves a CPUPPCState variable and QOM cast.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Many of these should be cleaned up with proper qdev-/QOM-ification.
Right now there are many catch-all headers in include/hw/ARCH depending
on cpu.h, and this makes it necessary to compile these files per-target.
However, fixing this does not belong in these patches.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both fields are used in VMState, thus need to be moved together.
Explicitly zero them on reset since they were located before
breakpoints.
Pass PowerPCCPU to kvmppc_handle_halt().
Signed-off-by: Andreas Färber <afaerber@suse.de>