The SBE (Self Boot Engine) are on-chip microcontrollers that perform
early boot steps, as well as provide some runtime facilities (e.g.,
timer, secure register access, MPIPL). The latter facilities are
accessed mostly via a message system called SBEFIFO.
This driver provides initial emulation for the SBE runtime registers
and a very basic SBEFIFO implementation that provides the timer
command. This covers the basic SBE behaviour expected by skiboot when
booting.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20220811093726.1442343-1-npiggin@gmail.com>
[danielhb: fixed SBE_HOST_RESPONSE_MASK long line]
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
On P10, the chip id is calculated from the "Primary topology table
index". See skiboot commits for more information [1].
This information is extracted from the hdata on real systems which
QEMU needs to emulate. Add this property for all machines even if it
is only used on POWER10.
[1] https://github.com/open-power/skiboot/commit/2ce3f083f399https://github.com/open-power/skiboot/commit/a2d4d7f9e14a
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210901094153.227671-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We forward-declare Object typedef in "qemu/typedefs.h" since commit
ca27b5eb7c ("qom/object: Move Object typedef to 'qemu/typedefs.h'").
Use it everywhere to make the code simpler.
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20210225182003.3629342-1-philmd@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.
Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201016145346.27167-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>
The XSCOM bus is implemented with a QOM interface, which is mostly
generic from a CPU type standpoint, except for the computation of
addresses on the Pervasive Connect Bus (PCB) network. This is handled
by the pnv_xscom_pcba() function with a switch statement based on
the chip_type class level attribute of the CPU chip.
This can be achieved using QOM. Also the address argument is masked with
PNV_XSCOM_SIZE - 1, which is for POWER8 only. Addresses may have different
sizes with other CPU types. Have each CPU chip type handle the appropriate
computation with a QOM xscom_pcba() method.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157623843543.360005.13996472463887521794.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since pnv_dt_xscom() is called from chip specific dt_populate() hooks,
it shouldn't have to guess the chip type in order to populate the
"compatible" property. Just pass the compat string and its size as
arguments.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157623842430.360005.9513965612524265862.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since pnv_dt_xscom() is called from chip specific dt_populate() hooks,
it shouldn't have to guess the chip type in order to populate the "reg"
property. Just pass the base address and address size as arguments.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157623841868.360005.17577624823547136435.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PBA bridge unit (Power Bus Access) connects the OCC (On Chip
Controller) to the Power bus and System Memory. The PBA is used to
gather sensor data, for power management, for sleep states, for
initial boot, among other things.
The PBA logic provides a set of four registers PowerBus Access Base
Address Registers (PBABAR0..3) which map the OCC address space to the
PowerBus space. These registers are setup by the initial FW and define
the PowerBus Range of system memory that can be accessed by PBA.
The current modeling of the PBABAR registers is done under the common
XSCOM handlers. We introduce a specific XSCOM regions for these
registers and fix :
- BAR sizes and BAR masks
- The mapping of the OCC common area. It is common to all chips and
should be mapped once. We will address per-OCC area in the next
change.
- OCC common area is in BAR 3 on P8
Inspired by previous work of Balamuruhan S <bala24@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191211082912.2625-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Some devices could be initialized in the instance_init handler but not
realized for configuration reasons. Nodes should not be added in the DT
for such devices.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191210135845.19773-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Some PnvXScomInterface objects lie a bit deeper (PnvPBCQState) than
the first layer, so we need to loop on the whole object hierarchy to
catch them.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191210135845.19773-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
[dwg: Corrected error in comment]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is an empty shell with the XSCOM bus and cores. The chip controllers
will come later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191205184454.10722-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
During PowerNV boot skiboot populates the device tree by
retrieving base address of homer/occ common area from
PBA BARs and prd ipoll mask by accessing xscom read/write
accesses.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Balamuruhan S <bala24@linux.ibm.com>
Message-Id: <20190912093056.4516-2-bala24@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In my "build everything" tree, changing hw/hw.h triggers a recompile
of some 2600 out of 6600 objects (not counting tests and objects that
don't depend on qemu/osdep.h).
The previous commits have left only the declaration of hw_error() in
hw/hw.h. This permits dropping most of its inclusions. Touching it
now recompiles less than 200 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-19-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
The PNV_XSCOM_BASE and PNV_XSCOM_SIZE macros are specific to POWER8
and they are used when the device tree is populated and the MMIO
region created, even for POWER9 chips. This is not too much of a
problem today because we don't have important devices on the second
chip, but we might have oneday (PHBs).
Fix by using the appropriate macros in case of P9.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190612174345.9799-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PRD (Processor recovery diagnostics) is a service available on
OpenPower systems. The opal-prd daemon initializes the PowerPC
Processor through the XSCOM bus and then waits for hardware diagnostic
events.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190527071722.31424-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To improve OPAL/skiboot support. We don't need to strictly model these
XSCOM accesses.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-14-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This cleanup makes the number of objects depending on qapi/error.h
drop from 1910 (out of 4743) to 1612 in my "build everything" tree.
While there, separate #include from file comment with a blank line,
and drop a useless comment on why qemu/osdep.h is included first.
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180201111846.21846-5-armbru@redhat.com>
[Semantic conflict with commit 34e304e975 resolved, OSX breakage fixed]
These are useful when instantiating device models which are shared
between the POWER8 and the POWER9 processor families.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'pnv' prefix is now used for all and the routines populating the
device tree start with 'pnv_dt'. The handler of the PnvXScomInterface
is also renamed to 'dt_xscom' which should reflect that it is
populating the device tree under the 'xscom@' node of the chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Move the generic cpu_synchronize_ functions to the common hw_accel.h header,
in order to prepare for the addition of a second hardware accelerator.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Vincent Palatin <vpalatin@chromium.org>
Message-Id: <f5c3cffe8d520011df1c2e5437bb814989b48332.1484045952.git.vpalatin@chromium.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
High addresses can overflow the uint32_t pcba variable after the 8byte
shift.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PnvChip is defined twice and this can confuse old compilers :
CC ppc64-softmmu/hw/ppc/pnv_xscom.o
In file included from qemu.git/hw/ppc/pnv.c:29:
qemu.git/include/hw/ppc/pnv.h:60: error: redefinition of typedef ‘PnvChip’
qemu.git/include/hw/ppc/pnv_xscom.h:24: note: previous declaration of ‘PnvChip’ was here
make[1]: *** [hw/ppc/pnv.o] Error 1
make[1]: *** Waiting for unfinished jobs....
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On a real POWER8 system, the Pervasive Interconnect Bus (PIB) serves
as a backbone to connect different units of the system. The host
firmware connects to the PIB through a bridge unit, the
Alter-Display-Unit (ADU), which gives him access to all the chiplets
on the PCB network (Pervasive Connect Bus), the PIB acting as the root
of this network.
XSCOM (serial communication) is the interface to the sideband bus
provided by the POWER8 pervasive unit to read and write to chiplets
resources. This is needed by the host firmware, OPAL and to a lesser
extent, Linux. This is among others how the PCI Host bridges get
configured at boot or how the LPC bus is accessed.
To represent the ADU of a real system, we introduce a specific
AddressSpace to dispatch XSCOM accesses to the targeted chiplets. The
translation of an XSCOM address into a PCB register address is
slightly different between the P9 and the P8. This is handled before
the dispatch using a 8byte alignment for all.
To customize the device tree, a QOM InterfaceClass, PnvXScomInterface,
is provided with a populate() handler. The chip populates the device
tree by simply looping on its children. Therefore, each model needing
custom nodes should not forget to declare itself as a child at
instantiation time.
Based on previous work done by :
Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Added cpu parameter to xscom_complete()]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>