Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190215100058.20015-5-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190215100058.20015-4-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190215100058.20015-3-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
External PID is a mechanism present on BookE 2.06 that enables application to
store/load data from different address spaces. There are special version of some
instructions, which operate on alternate address space, which is specified in
the EPLC/EPSC regiser.
This implementation uses two additional MMU modes (mmu_idx) to provide the
address space for the load and store instructions. The QEMU TLB fill code was
modified to recognize these MMU modes and use the values in EPLC/EPSC to find
the proper entry in he PPC TLB. These two QEMU TLBs are also flushed on each
write to EPLC/EPSC.
Following instructions are implemented: dcbfep dcbstep dcbtep dcbtstep dcbzep
dcbzlep icbiep lbepx ldepx lfdepx lhepx lwepx stbepx stdepx stfdepx sthepx
stwepx.
Following vector instructions are not: evlddepx evstddepx lvepx lvepxl stvepx
stvepxl.
Signed-off-by: Roman Kapl <rka@sysgo.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Memory operations have no side effects on fp state.
The use of a "real" conversions between float64 and float32
would raise exceptions for SNaN and out-of-range inputs.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Tidy the invalid exception checking so that we rely on softfloat for
initial argument validation, and select the kind of invalid operand
exception only when we know we must. Pass and return float64 values
directly rather than bounce through the CPU_DoubleU union.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Tidy the invalid exception checking so that we rely on softfloat for
initial argument validation, and select the kind of invalid operand
exception only when we know we must. Pass and return float64 values
directly rather than bounce through the CPU_DoubleU union.
Note that because we know float_flag_invalid was set, we do not have
to re-check the signs of the infinities.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Tidy the invalid exception checking so that we rely on softfloat for
initial argument validation, and select the kind of invalid operand
exception only when we know we must. Pass and return float64 values
directly rather than bounce through the CPU_DoubleU union.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Divide by zero, exception taken, leaves the destination register
unmodified. Therefore we must raise the exception before returning
from helper_fdiv. Move the check from do_float_check_status into
helper_fdiv.
At the same time, tidy the invalid exception checking so that we
rely on softfloat for initial argument validation, and select the
kind of invalid operand exception only when we know we must.
At the same time, pass and return float64 values directly rather
than bounce through the CPU_DoubleU union.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When running in a parallel context, we must use a helper in order
to perform the 128-bit atomic operation. When running in a serial
context, do the compare before the store.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Section 1.4 of the Power ISA v3.0B states that this insn is
single-copy atomic. As we cannot (yet) issue 128-bit stores
within TCG, use the generic helpers provided.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Section 1.4 of the Power ISA v3.0B states that both of these
instructions are single-copy atomic. As we cannot (yet) issue
128-bit loads within TCG, use the generic helpers provided.
Since TCG cannot (yet) return a 128-bit value, add a slot within
CPUPPCState for returning the high half of a 128-bit return value.
This solution is preferred to the helper assigning to architectural
registers directly, as it avoids clobbering all TCG live values.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The powerpc Linux kernel[1] and skiboot firmware[2] recently gained changes
that cause the Processor Compatibility Register (PCR) SPR to be cleared.
These changes cause Linux to fail to boot on the Qemu powernv machine
with an error:
Trying to write privileged spr 338 (0x152) at 0000000030017f0c
With this patch Qemu makes this register available as a hypervisor
privileged register.
Note that bits set in this register disable features of the processor.
Currently the only register state that is supported is when the register
is zeroed (enable all features). This is sufficient for guests to
once again boot.
[1] https://lkml.kernel.org/r/20180518013742.24095-1-mikey@neuling.org
[2] https://patchwork.ozlabs.org/patch/915932/
Signed-off-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The Partition Table Control Register (PTCR) is a hypervisor privileged
SPR. It contains the host real address of the Partition Table and its
size.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The hypervisor doorbells are used by skiboot and Linux on POWER9
processors to wake up secondaries.
This adds processor control support to the Server architecture by
reusing the Embedded support. They are very similar, only the bits
definition of the CPU identifier differ.
Still to be done is message broadcast to all threads of the same
processor.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PIDR (process id register) is used to store the id of the currently
running process, which is used to select the process table entry used to
perform address translation. This means that when we write to this register
all the translations in the TLB become outdated as they are for a
previously running process. Thus when this register is written to we need
to invalidate the TLB entries to ensure stale entries aren't used to
to perform translation for the new process, which would result in at best
segfaults or alternatively just random memory being accessed.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Fixed compile error for 32-bit targets]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xscvqpudz: VSX Scalar truncate & Convert Quad-Precision format to
Unsigned Doubleword format
xscvqpuwz: VSX Scalar truncate & Convert Quad-Precision format to
Unsigned Word format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
slbieg: SLB Invalidate Entry Global
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xststdcsp: VSX Scalar Test Data Class Single-Precision
xststdcdp: VSX Scalar Test Data Class Double-Precision
xststdcqp: VSX Scalar Test Data Class Quad-Precision
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xvtstdcsp: VSX Vector Test Data Class Single-Precision
xvtstdcdp: VSX Vector Test Data Class Double-Precision
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xvcvhpsp: VSX Vector Convert Half Precision to Single Precision
xvcvsphp: VSX Vector Convert Single Precision to Half Precision
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xscvsdqp: VSX Scalar Convert Signed Doubleword format to
Quad-Precision format
xscvudqp: VSX Scalar Convert Unsigned Doubleword format to
Quad-Precision format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdutrunc. Decimal unsigned truncate. Works like bcdtrunc. with
unsigned BCD numbers.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdtrunc.: Decimal integer truncate. Given a BCD number in vrb and the
number of bytes to truncate in vra, the return register will have vrb
with such bits truncated.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xscvqpsdz: VSX Scalar truncate & Convert Quad-Precision format to
Signed Doubleword format
xscvqpswz: VSX Scalar truncate & Convert Quad-Precision format to
Signed Word format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdsr.: Decimal shift and round. This instruction works like bcds.
however, when performing right shift, 1 will be added to the
result if the last digit was >= 5.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdus.: Decimal unsigned shift. This instruction works like bcds. but
considers only unsigned BCDs (no sign in least meaning 4 bits).
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcds.: Decimal shift. Given two registers vra and vrb, this instruction
shift the vrb value by vra bits into the result register.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xscvqpdp: VSX Scalar round & Convert Quad-Precision format to
Double-Precision format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xscvdpqp: VSX Scalar Convert Double-Precision format to
Quad-Precision format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xscvdphp: VSX Scalar round & Convert Double-Precision format to
Half-Precision format
xscvhpdp: VSX Scalar Convert Half-Precision format to
Double-Precision format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since helper_compute_fprf() works on float64 argument, rename it
to helper_compute_fprf_float64(). Also use a macro to generate
helper_compute_fprf_float64() so that float128 version of the same
helper can be introduced easily later.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xxinsertw: VSX Vector Insert Word
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xxextractuw: VSX Vector Extract Unsigned Word
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
stxvll: Store VSX Vector Left-justified with Length
Vector (8-bit elements) in BE/LE:
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--+--+
|“T”|“h”|“i”|“s”|“ ”|“i”|“s”|“ ”|“a”|“ ”|“T”|“E”|“S”|“T”|00|00|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--+--+
Storing 14 bytes would result in following Little/Big-endian Storage:
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--+--+
|“T”|“h”|“i”|“s”|“ ”|“i”|“s”|“ ”|“a”|“ ”|“T”|“E”|“S”|“T”|FF|FF|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--+--+
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdsetsgn.: Decimal set sign. This instruction copies the register
value to the result register but adjust the signal according to
the preferred sign value.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdcpsgn.: Decimal copy sign. Given two registers vra and vrb, it
copies the vra value with vrb sign to the result register vrt.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdctsq.: Decimal convert to signed quadword. It is possible to
convert packed decimal values to signed quadwords.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
bcdcfsq.: Decimal convert from signed quadword. It is not possible
to convert values less than -10^31-1 or greater than 10^31-1 to be
represented in packed decimal format.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
[dwg: Corrected constant which should be 10^16-1 but was 10^17-1]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>